Kortfattet oppsummering av resultater fra prosjektet:

NYTTESTYRING I IT-PROSJEKTER

Prosjektleder: Magne Jorgensen
Simula Metropolitan

Nedenfor folger en kortfattet oppsummering av det som oppfattes som de viktigste resultatene fra
prosjektet Nyttestyring i I'T-prosjekter, stottet av midler fra Prosjekt Norge. Utfyllende
dokumentasjon av resultater finnes 1 vedleggene.

Tema 1: Hva kjennetegner IT-prosjekter som leverer god nytte?
Prosjektet bygger videre pa tidligere undersokelser av hovedsakelig norske I'T-prosjekter.
Gjennomgaende i alle undersokelsene er folgende monster (kjennetegn) for I'T-prosjekter som
leverer god nytte:

e [Fleksible kontrakter (per time e.l. baserte avtaler, ikke fastpris)

e Rammeavtaler med flere leverandorer, og prosjektet kjores som «internprosjekt» og ikke som
«everandorprosjekt». God kunde-evne til 4 velge de mest kompetente utviklere og andre fra,
helst flere, leveranderer. (darligste modell var valg av en stor leverander som kjorer prosjektet).

e God bruk av smidige metoder, med vekt pa fleksibelt innhold og hyppige leveranser. I tillegg har
vi funnet at:

0 Mens mer kravendringer z&ke reduserer vellykketheten til smidige prosjekter (smidigs
motto om «embrace change» stottes alsa av empiri, sa gjelder det motsatte for ikke-
smidige prosjekter (som dermed har rett 1 at «scope creep» er uheldig — for dem).

o Smidige metoder passer minst like godt for store som for sma prosjekter. Dette har det
vert en del diskusjon om, med mange som har ment at smidig kun passer for de mindre
prosjektene. Vi finner at det er grunn til a tro at det er sarlig for de store prosjektene at
smidig utvikling er viktig for a kunne levere god nytte.

e Underveis nyttestyring og plan for hvordan nytte skal hentes ut. Et gjennomgdende funn i
undersokelsene er at det som virkelig skiller de som lykkes har gode prosesser for underveis
nyttestyring og planer for uthenting av nytte. Slike prosesser og planer ser ikke ut til 4 matte vare
avanserte, men kan for eksempel godt besta i at prosjektet har regelmessig gjennomgang av
prioriteter av leveranser (bade hva og nar) der oppdaterte kost-nytte vurderinger brukes, samt
planer som er klare pa hvem som er ansvarlig, hvordan og nar nytte skal realiseres.

e Bruk av autonome team. Her ma bemerkes at det er store variasjoner og at vi ikke har solide
resultater pa hvor stor grad av autonomi som er bra og hvordan effekten avhenger av andre
forhold. Forskning pa dette pagar og resultater vil trolig foreligge 1 starten av 2019.

Tema 2: Hvordan gjennomfere en god analyse av nytte, inkludert
usikkerhetsanalyse?

Felles enhet for nytte som muliggjor god nyttestyring

Mens kostnader stort sett har en felles enhet (kroner og ore) sa er det ikke alltid like enkelt 4
sammenfatte total nytte. Typisk har I'T-prosjekter en liste med nytte-effekter der noen er malt i
kroner og ore, mens andre nytteeffekter er malt pa annen mate, eller ikke malt i det hele tatt. Dette
vil 1 mange tilfelle vanskeliggjore en god underveis nyttestyring — og ogsa en god sammenligning
mellom alternativ.

Prosjekt Norge

Vi har foreslatt en metode for kvantifisering av nytte, med felles enhet (nyttepoeng) til bruk for

kvantitativ underveis nyttestyring. Metoden bestar noe forenklet i:

e Angivelse av liste av malsetninger for prosjektet (f eks M1, M2 og M3)

e Angivelse av viktighet for disse i1 prosent av total nytte levert (f eks M1 utgjor ca. 50% av nytten
prosjektet skal levere og M2 og M3 25% hver.)

o Dersom ett av malene er kvantifisert (f eks at M1 skal gi 20 mill. i innsparte kostnader) sa
kan de andre beregnes ut fra dette (f eks at siden M1 gir 20 mill innsparing, sa er verdien
av M2 og M3 5 mill hver).

o Dersom ingen av malene er kvantifisert sa brukes «nyttepoengy, som angir relativ nytte (f
eks at M1 gis 20 nyttepoeng, og man derav avleder at M2 og M3 gir 5 nyttepoeng hver).

e Liste av leveranser for prosjektet (f eks L1, L2 og L3)

e For hver av leveransene angis hvor mye disse bidrar til maloppnaelse (f eks hvor mye L1 bidrar
til oppndelse av nytten ved M1, M2 og M3).

e Bidraget fra hver leveranse til nytteverdi (maloppnaelse) brukes til vurdering av prioritet til
leveranse og dermed til underveis nyttestyring.

e Kontinuerlig tilbakemelding fra underveis leveranser og hva disse har oppnadd av nytte, og om
nodvendig justering av nytteestimater per leveranse og/eller mal.

e Evaluering av faktisk oppnadd nytte i etterkant.

Forskningsprosjektet har evaluert denne metoden for kvantifisering og styring av nytte, bade hos
SPK og Oslo kommune, og funnet at den lar seg gjennomfore. I hvilken grad den forer til bedre
nyttestyring er fortsatt ikke avklart. En bok om metoden (pa Springer-forlaget, vil vare gratis
nedlastbar) er planlagt for 2019.

Bedre metoder for usikkerhetsanalyse av nytte (og kostnader)

Vi har avdekket av estimering og usikkerhetsanalyse pa nytte er et svaert umodent omrade for de aller

fleste norske I'T-organisasjoner. Stort sett gjores ikke usikkerhetsanalyser pa nytte i det hele tatt, eller

sa gjores det uten a kvantifisere usikkerheten. Dette finner vi at typisk gir en urettmessig fordel for
de usikre alternativene (konseptene), som for eksempel nyutvikling, malt mot der mer forutsigbare
alternativene, som videreutvikling av eksisterende losninger. Manglende usikkerhetsanalyse av nytte
gjor det ogsa slik at faktisk ulonnsomme tiltak kan se ut til 4 vare lonnsomme. Vi har foreslatt — og
delvis evaluert — en metode for usikkerhetsanalyse for nytte (og kostnader) som baserer seg pa at
prosjektet:

e Finner fram til (eller bruker ekspertvurderinger) fordeling for tidligere avvik mellom estimert
nytte (og kostnad) for lignende prosjekter (f eks at 50% av tidligere prosjekter av lignende type
har levert 80% eller mindre enn estimert)

e Bruker denne fordelingen til 4 estimere usikkerheten til naverende estimat (f eks at dersom
nytten er estimert til 20 mill, og 50% av tidligere estimater av nytte har levert 80% eller mindre
nytte enn estimert, sa er p50 (50% sikkert) for dette prosjektet at prosjektet leverer minst 16 mill.
1 nytte)

Ovennevnte metode har blitt evaluert for reelle prosjekter for evaluering av kostnader, og funnet a gi

okt realisme. Forskningsprosjektets analyser tyder pa at dette ogsa vil vere tilfelle for

usikkerhetsanalyser av nytte.

Prosjekt Norge

Vedlegg 1: Vitenskapelige artikler med resultater fra prosjektet

e Jorgensen, M. (2018, May). Do Agile Methods Work for Large Software Projects?

In International Conference on Agile Software Development (pp. 179-190). Springer, Cham.

e Jorgensen, M. (2018, December). Looking back on previous estimation error as a method to
improve the uncertainty assessment of benefits and costs of software development projects. In
9th International Workshop on Empirical Software Engineering Practice IWESEP 2019).
(Innhold ogsa presentert pa Prosjekt Norges arlige konferanse 1 2017)

e Jorgensen, M. (2018, December). Scope creep or embrace change? A survey of the connection
between requirement changes, use of agile, and software project success. 12th International
conference on Project Management (ProMAC) (pp. 673-681).

e Jorgensen, M. (2018). Relations between Project Size, Agile Practices and Successful Software
Development (Akseptert for utgivelse i IEEE Software).

Vedlegg 2: Utvalg av industri- og forskningspresentasjoner der resultater fra
prosjektet er presentert

e Keynote XP-conference, 2018. When is agile better? How the use of agile and autonomous
teams affect success differently in different contexts (and other results)

e Presentation PMI/Prosjekt Norge, 2018: Agile software development and benefits
management: A perfect match.

e Keynote ICSSE, 2018. What makes software projects successful?

e Invited talk, Delft symposium on data analytics, 2018. The world is skewed. Ignorance, use,
misuse, misunderstandings, and how to improve cost and benefits uncertainty analyses in
software development projects.

e Keynote Software (DnD), 2018. Milliardinvesteringer i digitalisering. Hva gir det oss?

e DPresentasjoner pa HIT-nettverkets seminarer:

o Oktober 2018: Storskala smidig I'T-utvikling: Erfaringer med Spotify-modellen, SAFe og
LeSS, Casper Lassenius
o Mars 2018: Usikkerhetsvurderinger for nyttepoeng og kostpoeng, Jo Hannay

VEDLEGG 1

Scope Creep or Embrace Change? A Survey of the
Connections Between Requirement Changes,
Use of Agile, and Software Project Success

Abstract

Traditionally, a high degree of requirement
change has been considered harmful for the success
of software projects. Software professionals who use
agile software development methods tend to view this
topic differently. They tend to view requirement
changes more as opportunities, which should be
welcomed. Possibly, both views are correct but valid
in different software development contexts. This
paper aims at increasing the understanding of the
connections between the degree of requirement
change, choice of development method, and project
success. Seventy software professionals were asked to
provide information about their last software project.
A higher degree of requirement changes, here
defined as more than 30% of the requirements added,
deleted, or changed during the project’s execution,
was connected with a higher proportion of successful
projects in an agile development context, but only
when this included frequent deliveries to production.
Our results consequently support that the agile claim
of “embrace change” has merit, but only in agile
contexts.

1. Introduction

When software professionals are asked what they
consider the main risk factors of software projects,
they tend to include factors related to the requirement
specifications. The survey reported in [1] is a good
illustration. In that survey, the respondents ranked
“misunderstanding the requirements” the second
most important risk factor, “lack of frozen
requirements” the sixth most important risk factor,
and “changing scope/objectives” the seventh most
important risk factor. Ranking incomplete and
changing requirement specifications as important risk
factors is in accordance with the traditional view of
software development and requirement engineering.
This view typically considers a requirement
specification as consisting of “a set of system
requirements which, as far as possible, is complete,
consistent, relevant and reflects what the customer
actually wants” [2].

Some software professionals seem to have
different views on changed requirements. Those who

use agile development methods recommend, among
others, valuing “responding to change over following
a plan,”! and to promote the principle of “welcome
changing requirements, even late in development.”
They also seem to think of requirement changes
during the project’s execution as opportunities to
increase client values rather than as threats to the
success of the project [3]. This corresponds with the
observation that agile methods to some extent are
designed for flexibility in scope and frequent
requirement changes, e.g., as implemented in the
common agile practice of flexible scope and frequent
deliveries to client with opportunities for feedback
and learning during the project execution.

The study reported in this paper tries to shed
some light on the connection between requirement
changes, development methods, and project
outcomes. This include the goal of examining
whether both viewpoints could be right, that is, that
many requirement changes are connected with better
outcomes for agile software projects, but worse
outcomes for non-agile software projects. The main
research questions are:

RQ1: How is the connection between amount of
requirement changes and project outcome dependent
on the development method?

RQ2: Among agile software projects, is there a
difference in the connection between amount of
requirement change and project outcome for project
with and without frequent delivery to clients?

The second research question is motivated by our
previous research, see [4], where frequent delivery to
client were found to be one of the practices with
strongest connection to project success.

The remainder of this paper is organized as
follows: Section 2 describes selected related work on
the effect of requirement changes, Section 3
describes the design and the results of the survey,
Section 4 discusses the results and concludes.

2. Related work

A study by Serrador and Pinto [5], which
examined 1002 software projects, suggests that the

! www.agilealliance.org/agile101/the-agile-manifesto/. Retrieved
May 22,2018.

2 www.agilealliance.org/agile101/12-principles-behind-the-agile-
manifesto/. Retrieved May 22, 2018.

most successful projects were those with most effort
spent on specifying the requirements before the
projects were initiated. The survey, and review, paper
[6] reports “functional, performance, and reliability
requirements and scope are not documented” as the
second most important software project risk factor. A
survey of software managers reports that they
considered requirement volatility among the top
software failure risk factors [7].

The project survey reported in [8] finds a negative
correlation between requirement changes and cost
control. Similarly, the study in [9] reports a negative
effect of requirement changes on product
performance, measured as system reliability, ease of
use, ability to meet users’ requirements, and user
satisfaction. The same study also reports a negative
effect of requirement changes on project performance
measured as budget and schedule control.

The survey of software projects reported in [10],
which examined the connection between increases in
the requirement scope and the degree of client
satisfaction with the project, found that a large
requirement increase was connected with more
project failures for traditional projects but not for
agile projects. Although this finding is highly
relevant for the study in this paper, and indicates that
the choice of development method matters for the
effect of requirement changes on project outcomes,
the study had limitations. The traditional projects, on
average, were much larger (and were likely to be
more complex) and had a higher number of
requirement changes than the agile projects. The
difference in how requirement changes and client
satisfaction were connected, therefore, could be a
result of factors other than the choice of development
method.

A survey of 399 agile software projects [11]
reports that agile teams’ ability to respond to
requirement changes, measured as the proportion of
change requests implemented (response
extensiveness) and the speed (response efficiency),
was positively connected to the ability of the
software functionality delivered to meet the
requirements, achieve goals, and satisfy users. A high
response extensiveness had no large effect on the
other project success dimensions, suggesting that
responding to additional requirement changes was
connected to better client satisfaction and benefits,
without harming the other project success measures.

The survey reported in [4] found that agile
projects with a flexible scope had almost twice as
high a success rate as agile projects without a flexible
scope. This result may be interpreted as supporting
the benefit of adopting the agile principle of
welcoming change.

An inherent problem in studying requirement
specifications and requirement volatility is that we do
not have commonly accepted and easy-to-implement
measures of the size and complexity of a requirement

change, the types of requirement changes, or the
degree of change of a requirement specification [12].
The negative, or positive, consequences of a
requirement change may depend, for example, on
whether the change is only minor or leads to a large
amount of rework, whether due to improved insight
into client needs or external changes, and whether the
change appears early or late in the project.

The great majority of previous research results, as
far as we can see, suggest that more requirement
changes are connected with more problematic and
less successful software development. However, most
of the research was conducted in a non-agile software
development context. Therefore, whether the
“embrace change” claim made by agile software
professionals has some merit remains unproved. This
is in particular the case, taking into account that more
recent studies [4, 10, 11] give some hope for positive
effects of requirement changes in the context of agile
projects.

3. The survey

3.1. Design

The survey requested the participants, who were
project managers and software developers from
different organizations participating in a seminar on
software cost estimation, to provide information
about their last completed software projects with
budgets of more than €100,000. Seventy-five
responses were received. Five of the responses were
incomplete, i.e., included “don’t know” responses,
and therefore removed, leaving 70 complete
responses. Each response included information about
the following:

e The respondent’s role (free text) and length of
experience (years).

o The budget category of the project: €100,000—1
million?, €1-10 million, >€10 million.

o The type of development method used: Agile,
Waterfall/Traditional, Mixed/other.

e Frequency of completed software functionality
delivered to production or to user evaluation
with feedback (this variable was included based
on the results in [4], where delivery frequency
was an essential variable for success with agile
projects): None, 1-4 per year, More than 4 per
year.

e Percentage of requirements added, removed,
and/or updated: 0-10%, 10-30%, More than
30%.

e Reasons why the requirements were added,
removed, and/or updated:* Learned about client

3 The original questions were in Norwegian and used Norwegian
currency. The budget values are approximate monetary values
assuming that EUR 1 =NOK 10.

needs or gained insight during the project
execution, External changes, Insufficient
requirement analysis before the project started,
Other reasons.

e Perceived project outcome (for each of the
project success dimensions below, the
respondent was requested, based on his/her
evaluation, to choose one of the outcome
categories: Very successful — Successful —
Acceptable — Problematic — Very problematic):
Client benefits, Technical quality of software,
Cost control, Time control, Work efficiency.

We categorized the total performance (outcome)
of a project as follows:

e Successful: The project was evaluated as very
successful or successful on all five success
dimensions (client benefits, technical quality of
software, cost control, time control, and work
efficiency)

e Acceptable: The project was not successful but
was evaluated as at least acceptable on all five
success dimensions.

e Problematic: The project was evaluated as
problematic or very problematic on at least one
of the success dimensions.

In the analysis section, we mainly present
analyses based on the proportion of successful and
problematic projects. The proportion of acceptable
projects can be derived from the proportion of
successful and problematic projects.

Due to few responses for some of the categories,
we decided to join the categories “Mixed/other” and
“Waterfall/traditional”, creating the category “Non-
agile”. This gives very rough development method
categories, but enables a comparison of what was
considered agile by the respondents with the other
projects. Similarly, the few responses with less than
10% requirement changes led us to join this category
with the 10-30% category. The choice of 30% as our
boundary value is to some extent arbitrary, but
hopefully useful to gain some insight into difference
of project with much and with less requirement
changes.

3.2. Limitations

When interpreting the survey results, the
following limitations should be kept in mind:

e The sample of respondents and their projects is
not necessarily representative of other contexts.
While this may strongly affect the characteristics
of the data set, it may have less impact on the
connections we focus on in this study. There is
clearly a need for more studies to assess the

“ It was possible to give more than one reason for the requirement
changes. Twenty-five percent of the respondents did this.

generality and context dependencies of the
results identified.

o The survey asked for the perceived (subjective)
performance related to the success dimensions
and did not use more objective measures of the
project outcome, what they meant by use of agile
or non-agile development methods, and a
requirement change. Although this makes the
evaluations highly subjective, and there will be
differences in use of terms among the
respondents, it may also have advantages. It may
be, for example, that delivering the software one
month late is acceptable in one project context
but leads to large problems in another context.
Mechanical evaluations of measured time
overrun may not enable such meaningful
distinctions.

e The respondents (34% were project managers or
team leaders and 66% were software developers)
were all from the provider side of the projects.
This may have affected the assessment of the
projects’ success. The results of a similar survey
(see [4]) found, however, that providers and
clients tend to give similar evaluations of
software projects, even when evaluating the
client benefits. In addition, a role bias is mainly a
problem for the main (interaction) analyses in
this paper if the role bias is different for different
development methods, which we believe is not
the case.

e The number of responses is low for the
interaction analyses of this paper, especially for
non-agile projects. This limits the robustness of
the results, excludes the use of tests for statistical
significance, and points to the need for follow-up
studies to validate the findings.

There is no guarantee that the respondents had the
required information about the project, even though
they chose to respond and had the option of leaving
questions unanswered or using the don’t know
category. The respondents’ experience, which, on
average, was 14 years (only 6 respondents had less
than 4 years of experience), gives some confidence
that they were sufficiently competent to possess the
required information.

3.3. Results

As can be seen in Table 1, 43% of the projects
had more than 30% requirement changes (inserted,
removed or updated requirements) during project
execution. On average, the projects with more than
30% requirement changes were somewhat more
successful (27% of them were successful) than those
with less than 30% requirement changes (18% of
them were successful). The projects with more than
30% requirement changes were also, on average,
slightly less problematic (33% of them were
problematic) than those with less than 30% changes

(37% of them were problematic). This not substantial
difference in project outcomes related to requirement
changes hides, however, a large difference when the
development method is included as an interacting
variable (see Fig. 1 and Fig. 2).

Table 1. Project characteristics

Variable Characteristics

58% less than €1 million
33% more than €1 million
9% larger than €10 million

Project size

Development 74% agile
method 26% non-agile

Delivery frequency 36% 4 or fewer per year
64% more than 4 per year

Requirement 57% less than 30%
changes 43% more than 30%

Reason for change 78% learning/insight

(more than one 16% external change

reason possible) 27% insufficient up-front
analysis

25% successful
39% acceptable
36% problematic

Project outcome

Fig. 1 shows that the proportion of successful
projects increased (from 15% to 31%) with more
requirement changes for agile projects but decreased
(from 25% to 0%) for non-agile projects. Notice that
the proportion of successful non-agile projects is
higher than that of the agile projects when there are
fewer than 30% requirement changes but
substantially lower when there are more requirement
changes. There were only four non-agile projects
with more than 30% requirement changes, which
means that we should interpret the decrease in the
success rate for the non-agile projects with great care.
Previous research (see Section 2), however, supports
a decrease in the success rate for non-agile software
projects with many requirement changes. The results
for non-agile projects with many requirement
changes, although based on very few observations,
therefore, are in accordance with some previous
results.

035 Development

Method
. i
030 P —e— Agile
- —B-— Non-agile

N -
020 N

015 o N

% Successful
N
7

010 N

0.00 h |

Less than 30% More than 30%
Requirement Volatility

Figure 1. Development methods, requirement
change, and proportion of successful projects.

Fig. 2 shows a weak decrease (from 31% to 27%)
in the proportion of problematic projects with more
requirement changes for agile projects. The
corresponding observation for non-agile projects is
an increase (from 50% to 75%) in the proportion of
problematic projects. As before, the number of non-
agile projects with more than 30% requirement
changes are few, and the results for non-agile projects
with many requirement changes, consequently, are
not very robust.

08 Development

Method
P - —e— Agile
0.7 -~ —B— Non-agile

o 0.6 -
= -
£ -
@ ~
5 05 L g
[=]
[
a
® 04
03 L

0.2
Less than 30% More than 30%
Requirement Volatility

Figure 2. Development methods, requirement
change, and proportion of problematic projects.

Table 2 shows the proportion of projects
evaluated as “very successful” or “successful” for
each of the success dimensions, development
methods, and requirement change categories. The
data suggest that the use of agile development
methods is connected with an increase in the
proportion of successes from less than 30% to more
than 30% requirement changes for all success
dimensions, but especially for the success dimensions
technical quality (72% - 48% = 24% point increase)
and cost control (50% - 38% = 12% point increase).

Table 2. Proportion projects evaluated to be
“successful” or “very successful” for each success
dimension, development method, and requirement

change category

Requirement Less than More than
change 30% change 30% change
Development Agil Non Agil Non
method e - e -
agile agile

Succes Client 77% 54% 85% 25%
s dim. benefits
Technica 48% 42% 72% 0%
1 quality
Cost 38% 50% 50% 0%
control
Time 46% 50% 54% 0%
control
Work 62% 42% 67% 50%
efficienc

y

In total, answering our RQ1, the results displayed
in Fig. 1, Fig. 2 and Table 2 suggest that there is an
interaction effect from development method on the
connection between requirement change and project
outcome. The agile software projects performed
better in contexts with more requirement changes,
while the opposite was the case for the non-agile
projects.

Motivated by the results in [4], and answering
RQ2, we expected to see a difference in the success
rate between agile projects with many (more than
four per year) and with fewer (four or fewer per year)
deliveries of completed software functionality to
production or to user evaluation. This is what we see
in Fig. 3 and Fig. 4.

Delivery Frequency
» —e— Four or less per year
L _ = More than four per year

% Successful
% S ful
o
@
N
\

0.05 \\

0.00 N

Less than 30% More than 30%
Requirement Volatility

Figure 3. Delivery frequency, requirement change,
and success for agile projects.

As can be seen in Fig. 3 and Fig. 4, the agile
projects were more successful and less problematic in
contexts with many requirement changes when the
projects had frequent deliveries (more than 4 per
year) to production or proper user evaluation of
completed functionality. Frequent delivery did,
however, not make any difference in the project’s

success rate and gave only a slightly lower rate of
problematic projects when there were fewer
requirement changes. To what extent frequent
deliveries to production, with feedback, causes more
requirement changes, leads to project success in
situations with more requirement changes, or
indicates a development context with success
inducing elements, such as more involved clients, is
hard to see from the data. This is another topic for
future examination.

Delivery Frequency
—e— Four or less per year

0.50 »

0.45

% Problematic

035

'S ~
L
0.25
Less than 30% More than 30%
Requirement Volatility

Figure 4. Delivery frequency, requirement change,
and problems for agile projects.

Requirement changes may differ considerably in
complexity, implications for rework, and how much
the changes disrupt the project execution. As an
initial step in understanding the influence of the type
of requirement change on the project performance,
we examined the effect of many requirement changes
on project performance for the three reasons (learning
or better insight, external changes, and insufficient
requirement analysis) individually. The results are
displayed in Table 3. We include only the results for
the agile projects, because there were too few
observations to give similar, meaningful results for
non-agile projects.

Table 3. Success and failure rate, per reason
(agile projects only)

Req. Less than 30% More than 30%
change changes changes

Reason Le Ex In Le Ex In

Success 20 0% 0% 30 17 20
% % % %
Accept. 55 33 50 33 50 20
% % % % % %
Problem 25 67 50 22 50 60
% % % % % %

' Le = Learning/insight, Ex = External, In = Insufficient analysis

The data in Table 3 do not reveal a clear pattern
connecting the reasons for and the degree of
requirement changes. The proportion of successful
projects increased and the proportion of problematic
projects decreased with more requirement changes
for all requirement change reasons. Notice, however,

= More than four per year

the higher problem rates for agile projects where the
requirement changes were categorized as externally
induced or caused by insufficient analysis compared
to when the requirement changes were categorized as
caused by learning or better insight.

Contextual differences may explain the
differences in how the requirement changes,
development method, and project performance are
connected. Many important contextual variables were
not collected, such as how late the requirement
change occurred and the skill of the development
team. It might nevertheless be interesting to examine
if there are essential differences between agile and
non-agile projects based on the data we collected; see
Table 4. The values related to “Reasons for changes”
are the proportion of projects where the reason was
believed by the respondent to have caused all or part
of the requirement changes, if any, in the project.
None, one, or more reasons could be provided for the
same project.

Table 4. Context differences between agile and

non-agile
Characteristic =~ Measure or Development
category method
Agile Non-
agile

Respondent’s Mean length of 13 15
experience experience (years)

Budget size Proportion costing 62% 44%
less than €1

million

Proportion costing 38% 56%
more than €1

million

Requirement Proportion with 50% 76%
change less than 30%
change
Proportion with 50% 24%
more than 30%

change
Reason for Proportiondueto 82% 67%
changes learning/insight

during project

execution

Proportiondueto 25% 11%
external changes
Proportiondueto 22% 44%
insufficient

requirement

analysis

As can be seen, there were fewer, but not
substantially fewer, agile projects (38% vs. 56%) in
the category of projects with a budget of more than
€1 million, more agile projects (50% vs. 24%) in the

category of projects with more than 30% requirement
changes, and for agile projects, respondents were
more likely to provide the requirement reasons
“learning/insight” (82% vs. 67%) and “external
changes” (25% vs. 11%) and less likely to give the
reason “insufficient requirement analysis” (22% vs.
44%). There were no large differences in the average
length of respondents’ experience for agile and non-
agile software projects (13 vs. 15 years). The
directions of the contextual differences shown in
Table 4 are not surprising. Agile development
methods are more commonly used for smaller
projects, agile projects receive more requirement
changes, and agile software professionals are less
likely to think about requirement changes caused by
insufficient requirement analysis, given less emphasis
on producing up front complete and detailed
requirement specifications. The higher degree of
externally induced requirement changes may indicate
that agile methods were more frequently used in
contexts with higher environmental (external factors-
based) uncertainty. All these differences point at
possible differences in development complexity, for
example, slightly larger projects for non-agile and
perhaps more requirement uncertainty for agile
projects, which, in turn, may explain some of the
observed differences in the project outcomes for agile
and non-agile projects. There is, however, little that
suggest that the identified differences in contexts,
which are not very large, explain the reported
differences in how well agile and non-agile software
projects succeed in situations with much requirement
changes.

4. Discussion and conclusion

Most software projects experience that
requirements are added, removed, or changed during
the project execution. In as much as 50% of the agile
and 24% of the non-agile projects included in our
survey, more than 30% of the requirements were
added, removed, or updated during the project
execution. Requirement changes may be viewed as a
threat or as an opportunity. Traditionally,
requirement changes have been viewed as a risk
factor, that is, a threat to the success of a software
project. Agile software developers, however, tend to
view requirement changes differently. They tend to
view changes as creating opportunities to deliver
more client benefits, and view them as something that
should be welcomed in software projects.

The present results provide support for both
views. When agile methods were used, but only when
used with frequent deliveries of completed
functionality to productions or user evaluation, many
requirement changes were connected to higher
proportions of successful projects and lower
proportions of problematic projects. For non-agile
projects and agile projects without frequent deliveries

to production, the outcome was the opposite. Many
requirement changes for such projects were
connected to less successful and more problematic
projects.

The connection examined in this paper, that is
how the development method influences the
connection between requirement changes and
software project success, has not been much
investigated empirically. The only previous study we
were able to identify is the one reported in [10]. As
reported in Section 2, that study found a positive
connection between a large increase in requirements
and more satisfied clients for agile but not for non-
agile software projects. Although limited to added
requirements, i.e., not including changed
requirements, and using client satisfaction as the only
success measure, this result is consistent with what
we found.

In the present study, non-agile projects (see Table
4) were larger than agile projects but not by much,
and we believe the difference is not large enough to
explain the differences in project outcomes. Indeed,
we found larger projects to be somewhat more
successful and less problematic (33% successful and
30% problematic projects) than smaller projects
(21% successful and 39% problematic projects).

The limited number of variables and observations
in this study means that we were unable to gain much
insight into the underlying mechanisms that created
the difference in project performance for different
levels of requirement changes and different
development methods. We cannot, as discussed in
Section 3, be sure that the observed differences
between successful and problematic projects were
caused by, as opposed to just correlated with,
differences in development method.

It is perhaps not surprising that a development
method designed for flexibility in scope and frequent
requirement changes, that is, the agile software
development method, leads to better project
outcomes than traditional, non-agile, methods when
there are many requirement changes. What is perhaps
more surprising is that projects following the agile
method, when including the agile practice of frequent
delivery to client, did betfer when there were more
rather than fewer requirement changes. Currently, we
find it hard to suggest mechanisms that should make
it easier to succeed with more rather than fewer
requirement changes. We suspect that the use of agile
development methods, but mainly when
implementing a practice with frequent deliveries to
production, combined with many requirement
changes correlates with the presence of other,
essential success factors. This may include success
factors related to more competent and involved
clients, better and more frequent feedback and
learning during project execution, better benefits
management processes, more skilled developer
teams, and better software testing facilities [13].

These interpretation challenges, together with the
study limitations discussed earlier, mean that there is
a need for more, carefully designed studies that not
only try to replicate our results and examine the
connections, but also try to better understand the
context, patterns, and mechanisms that lead to the
differences. This may be important in an evidence-
based attempt to improve requirement management
practices and project outcomes.

Changes in requirements are here to stay, and our
ability to manage them is essential for success in
software development. The present results provide
some evidence in support of that agile development
methods, when implementing frequent deliveries to
production or to user evaluation with feedback, are a
good choice when expecting many requirement
changes.

5. References

[1] Schmidt, R., K. Lyytinen, and P.C. Mark Keil,
Identifying software project risks: An international Delphi
study. Journal of management information systems, 2001.
17(4): p. 5-36.

[2] Sommerville, 1. and P. Sawyer, Requirements
engineering: a good practice guide. 1997: John Wiley &
Sons, Inc.

[3] Erickson, J., K. Lyytinen, and K. Siau, Agile modeling,
agile software development, and extreme programming: the
state of research. Journal of database Management, 2005.
16(4): p. 88.

[4] Jorgensen, M., A survey on the characteristics of
projects with success in delivering client benefits.
Information and Software Technology, 2016. 78: p. 83-94.

[5] Serrador, P. and J.K. Pinto, Does Agile work?—A
quantitative analysis of agile project success. International
Journal of Project Management, 2015. 33(5): p. 1040-1051.

[6] Kappelman, L.A., R. McKeeman, and L. Zhang, Early
warning signs of IT project failure: The dominant dozen.
Information systems management, 2006. 23(4): p. 31-36.

[7] Tiwana, A. and M. Keil, The one-minute risk
assessment tool. Communications of the ACM, 2004.
47(11): p. 73-77.

[8] Zowghi, D. and N. Nurmuliani. 4 study of the impact of
requirements volatility on software project performance. in
Sofiware Engineering Conference, 2002. Ninth Asia-
Pacific. 2002. IEEE.

[9] Govindaraju, R., et al.,, Requirement volatility,
standardization and knowledge integration in software
projects: an empirical analysis on outsourced IS
development projects. Journal of ICT Research and
Applications, 2015. 9(1): p. 68-87.

[10] Suma, V. and K. LakshmiMadhuri. Influence of Scope
Creep on Project Success: AComparative Study between

Conventional ApproachVerses Agile Approach. in IEEE
International Conference on Advanced research in
Engineering and Technology (ICARET). 2013.

[11] Lee, G. and W. Xia, Toward agile: an integrated
analysis of quantitative and qualitative field data on
software development agility. Mis Quarterly, 2010. 34(1):
p. 87-114.

[12] McGee, S. and D. Greer, Towards an understanding of
the causes and effects of software requirements change:
two case studies. Requirements Engineering, 2012. 17(2):
p. 133-155.

[13] Jorgensen, M., P. Mohagheghi, and S. Grimstad,
Direct and indirect connections between type of contract
and software project outcome. International Journal of
Project Management, 2017. 35(8): p. 1573-1586.

)

Check for
updates

Do Agile Methods Work for Large
Software Projects?

Magne Jﬂrgensen(g)
Simula Research Laboratory, 1364 Fornebu, Norway
magne j@simula. no

Abstract. Is it true that agile methods do not scale well and are mainly useful
for smaller software projects? Or is it rather the case that it is particularly in the
context of larger, typically more complex software projects that the use of agile
methods is likely to make the difference between success and failure? To find
out more about this, we conducted a questionnaire-based survey analyzing
information about 101 Norwegian software projects. Project success was mea-
sured as the combined performance of the project regarding delivered client
benefits, cost control, and time control. We found that that projects using agile
methods performed on average much better than those using non-agile methods
for medium and large software projects, but not so much for smaller projects.
This result gives support for the claim that agile methods are more rather than
less successful compared to traditional methods when project size increases.
There may consequently be more reasons to be concerned about how non-agile,
rather than how agile methods, scale.

Keywords: Agile development methods - Project size - Project success

1 Introduction

Much has been written about the extent to which agile methods are suitable for large
software projects. An early attempt to summarize what we know about agile methods
and their success when used in large software projects, authored by Dybé and Dingseyr
[1], concludes: “The evidence [...] suggests that agile methods not necessarily are the
best choice for large projects.” Similarly, the review published by Jalali and Wohlin [2]
finds: “[...] there is not sufficient evidence to conclude that Agile is efficiently appli-
cable in large distributed projects.” More recent reviews, see for example [3, 4],
emphasize challenges related to the use of agile methods for large software projects
and, similarly to the previous reviews, report little or no evidence to support the use of
agile methods for large software projects. Not only is much of the research literature
sceptical about the use of agile methods for large software projects, but several soft-
ware professionals also seem to think that agile methods are mainly for smaller soft-
ware projects.’ It is, in addition, not difficult to find examples of failed, large-scale agile

! For an example of an opinion-based argumentation of why agile is not useful for large projects, see blog.
inf.ed.ac.uk/sapm/2014/02/14/agile-methodologies-in-large-scale-projects-a-recipe-for-disaster/. This
blog post concludes that “Large-scale development projects are serious business: agile development
has no place here.”

© The Author(s) 2018
J. Garbajosa et al. (Eds.): XP 2018, LNBIP 314, pp. 179-190, 2018.
https://doi.org/10.1007/978-3-319-91602-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_12&domain=pdf
http://blog.inf.ed.ac.uk/sapm/2014/02/14/agile-methodologies-in-large-scale-projects-a-recipe-for-disaster/
http://blog.inf.ed.ac.uk/sapm/2014/02/14/agile-methodologies-in-large-scale-projects-a-recipe-for-disaster/

180 M. Jorgensen

software projects.” A comprehensive review of experience reports and case studies on
the challenges and success factors regarding the introduction of agile in large-scale
software development can be found in [5].

There are also reported cases where agile methods have been successfully used for
large software projects, see for example [6], and reports where agile methods are
claimed to have had a positive impact on the outcome of large software projects, see for
example [7, 8]. Finally, there are guidelines on how to succeed with large-scale agile
projects, such as [9], which claim to be based on the successful completion of large
software projects using agile methods.

These diverging results and opinions on the use of agile on large software project
may appear to be confusing. There are, however, several reasons why we should not
expect consistent results and opinions about the effect of using agile methods on larger
software projects:

o We do not have a clear, commonly agreed upon understanding of what it means to
work agile. Agile is not a well-defined method, but rather a set of values, principles,
and practices. There are consequently many good and bad ways of implementing
and using agile methods. There may, in addition, be external factors that complicate
the use of good agile, such as the use of fixed price contracts or insufficient
involvement by the client [10]. The same problems are present for non-agile
methods, which may include an even larger variety of practices. There are good and
bad ways of using most software development methods and it is frequently not clear
when it is the inexperience and lack of skill in using a method and when it is
inherent flaws in a method that contribute to software project failures.

o The development method is only one of many factors affecting the success of a
software project. Other factors, especially the level of provider and client compe-
tence, may be even more important to explain the outcome of large software
projects.

o We do not agree on what a large software project is. A large software project may
be defined relatively to those that an organization is used to completing or with
absolute measures such as budget size, number of developers, complexity, or
number of development teams [11]. In addition, the difference between a large
project (e.g., a project consisting of two teams and costing 10 million Euros) and a
mega-large project (e.g., a project consisting of ten teams and costing 100 million
Euros) may be substantial.

o We see it when we believe it (confirmation bias). People are good at summarizing
experience in a way that defends their beliefs. As documented in [12], those who
believe in the benefits of agile will tend to find evidence supporting the use of agile
even in random project data without any true patterns connecting development
method and project success. One example of how to confirm a strong belief in agile

2 See, for example, the UK National Audit Office report: www.nao.org.uk/wp-content/uploads/2013/
09/10132-001-Universal-credit.pdf. It is from the report not clear to what extent they think that it was
agile development itself, the actual implementation and use of agile or the project’s lack of expe-
rience with the use of agile that contributed to the failure of the project.

http://www.nao.org.uk/wp-content/uploads/2013/09/10132-001-Universal-credit.pdf
http://www.nao.org.uk/wp-content/uploads/2013/09/10132-001-Universal-credit.pdf

Do Agile Methods Work for Large Software Projects? 181

(or other) development methods is to categorize a software project as non-agile, or
at least not using agile methods properly, if it fails, i.e., if it works it is agile, if it
fails it is not true agile.

Despite the above methodological problems we may be able to find out more about
the scalability of agile methods by systematically collecting empirical evidence. If large
software projects using agile methods typically perform better than projects using other
methods, then this supports the claim that agile methods do scale to larger projects. It
may give this information even if we do not know exactly how agile was implemented
and used by the projects, are unable to use a commonly accepted and good definition of
what a large project is, and there are other factors that also matter for success. Many
companies may have adopted agile methods just recently, which means that if we find
that agile software projects perform worse, but perhaps not much worse, than non-agile
as the project size increases, we may not be able to conclude that agile methods will not
work on larger software projects. It may then improve as their competence in using the
methods improves.

In this paper we empirically compare agile and non-agile software development
projects by surveying a set of projects, collecting information about their size (as
measured by their budget), their use of development methods, and their degree of
success. The research question of our study is:

How is the relationship between project size, as measured by its budget, and success
affected by the development method?

As indicated earlier in this section, there are many studies on the use of agile
methods on large-scale software projects, and there are many strong opinions about
which method is the better to use on large projects. In spite of this, we have been
unable to find peer-reviewed research articles empirically analysing size-dependent
differences in success of projects using agile and non-agile development methods.
A non-peer reviewed study by the Standish Group from 2016 reports that projects
using agile development methods performed better than those using waterfall-based
methods for small, medium, and large project sizes, and particularly the largest pro-
jects. For the largest projects, the failure rate was 42% for waterfall projects and 23%
for agile projects. For the smallest project, the difference is smaller, with an 11% failure
rate for waterfall and a 4% failure rate for agile projects. This study indicates that agile
methods is not only well suited for large projects, but also increasingly more suited as
the project size increases. This is, to our knowledge, the only related work we can
compare our results with.

® There are reasons to be sceptical about the results published by the Standish Group; see our
comments on their survey methods on a previous survey in [13]. In its 2016 report the Standish
Group (www.standishgroup.com), improved the definition of success to include not only being on
time, on cost, and with the specified functionality, but also that the project delivers satisfactory
results (blog.standishgroup.com/post/23). Satisfactory results include, they claim, client value. This
improvement, given that it is properly integrated in their survey and that they have improved their
sampling of projects, may make their recent results more valid and useful.

http://www.standishgroup.com
http://blog.standishgroup.com/post/23

182 M. Jorgensen

The remaining article is organized as follows. Section 2 describes the survey
design, limitations, and results. Section 3 briefly discusses the results and concludes.

2 The Survey

2.1 Survey Design

The respondents of the survey were participants at a seminar on management of
software development projects in Oslo, Norway, March 2015.* All participants were
asked to provide information about their last project, including:

The respondent’s role in the project.

The project’s outcome in terms of client benefits, cost control, and time control.
The project’s budget.

The project’s use of agile practices, and the respondent’s assessment of how agile
the project had been.

We received information about 108 projects. An examination of the responses
showed that seven of them did not include the required information regarding one or
more of the variables used in our analysis. Removing these left 101 valid responses in
the data set.

Characteristics of the respondents and their projects include:

® Role: 56% of the respondents were from the client side and 44% from the provider
side.

e C(lient benefits: 35% were categorized as “successful,” 55% as “acceptable,” and
10% as “unsuccessful” or “failed.”

e Cost control: 30% were categorized as “successful,” 32% as “acceptable,” and 38%
as “unsuccessful” or “failed.”

e Time control: 37% were categorized as “successful,” 32% as “acceptable,” and 31%
as “unsuccessful” or “failed.”

® Budget: 48% of the projects had a budget less than 1 million Euros, 25% between 1
and 10 million Euros, and 27% more than 10 million Euros.”

e Agile practices: When asked to rank their project with respect to how agile it was
from 1 (very agile) to 5 (not agile at all), 17% responded with 1, 25% with 2, 40%
with 3, 14% with 4, and 4% with 5.

The participants were asked to name the agile practices they had used in their last
project. Comparing those descriptions, emphasizing the use of product backlogs,
frequent/continuous delivery to client, the use of scrum or similar management pro-
cesses, autonomous teams, and the use of velocity to track progress, with responses
regarding the degree of agility of the project using the scale from 1 to 5, we found it

“ Results from this survey have not been published earlier, but the design and project performance
measures are similar to those in the survey published in [14].

5 The original survey was in Norwegian and used Norwegian Kroner (NOK) as currency. The
Euro-values are the approximate values corresponding to the NOK-values.

Do Agile Methods Work for Large Software Projects? 183

reasonable to cluster the projects as “agile” if the response was 1 or 2, “partly agile” if
the response was 3, and “not agile” if the response was 4 or 5. There were, however, no
simple connection between the self-assessed degree of agility (using the scale from 1 to
5) and the implemented agile practices. This makes the development category
boundaries, especially the boundary between agile and partly agile, to some extent
fuzzy and subjective. While this may limit the strength of the analysis, it is clear from
the analysis that those categorized as agile on average have more agile practices than
those categorized as partly agile. While we believe that this is sufficient for meaningful
analyses, it is important to be aware of that degree of agility in our study is based on the
respondents subjective assessment.®

Our measure of a project’s level of success used a combination of three success
dimensions: client benefits, cost control, and time control. To be categorized as “ac-
ceptable”, we require a score of at least “acceptable” on all three dimensions. Fifty-four
percent of the projects were categorized as acceptable using this definition. Notice that
the inverse of “acceptable” (46% = 100% — 54%) is the set of projects assessed to
have a non-acceptable outcome on at least one of the success dimensions, i.e., the set of
“problematic” projects. To be categorized as “successful,” we require that all three
dimensions should be assessed as “successful.” Only 12% of the projects belonged to
that category.

2.2 Limitations

The survey has a number of limitations that it is important to be aware of when
interpreting the results, including:

® Representativeness. Our sample consists only of Norwegian software projects and is
a convenience sample based on input from people visiting a seminar on software
project management. The common use of agile methods in our data set suggests that
many of the companies represented by the participants had (possibly much)
experience in the use of agile methods. From more in-depth studies of software
projects in similar contexts, see [10], and common sense we know that companies
tend to have more problems in the initial phase when they introduce agile methods
compared to subsequent projects. The level of agile maturity and other largely
unknown sample characteristics, may affect how valid it is to extrapolate our results
to other context.

e Perception, not measurement: Several of the survey questions, particularly those
related to project outcome, are based on the respondents’ perceptions, not measured
data. This has some drawbacks, for example, different people may have different
viewpoints regarding the same project. It may also have some advantages. The
degree of success in time control, for example, may be more meaningfully assessed
subjectively. In one context, a 10% time overrun may point to a time control failure,
while in another context, the same overrun may be acceptable.

© The set of agile practises, combined with the project’s own assessment of degree of agility, of a
project and other project data used in the analyses will be sent to interested readers upon request to
the author.

184 M. Jorgensen

® Role bias. We decided to join the responses of those on the client and the provider
side, even though there may have been systematic differences in their responses. For
example, those in the client role seem to have been less critical than those in the
provider role when assessing the outcome of the projects. Using our measure of
acceptable outcomes, those on the client side found 66% of the projects to be
acceptable, while the figure was 46% when assessed by those on the provider side.
Those on the client and the provider side gave however approximately the same
average score regarding client benefits, i.e., 37% of the projects assessed by the
clients were successful regarding client benefits, while the figure was 32% when
assessed by the providers. If the role bias is not dependent on the degree of use of
agile methods, which we believe is the case, joining the responses of the two roles
will not affect the direction of the interaction effect reported later in this paper.

e Correlation vs. causation. There may be systematic differences in the non-measured
characteristics of the agile and the non-agile software projects. In particular, it may
be that the client and/or provider competence was higher for those using one type of
development method, e.g., providers and clients using agile methods may have been
more competent than those using non-agile methods. This will exaggerate the effect
of a development method if the most competent clients and providers are more
likely to choose the better development method. As with role bias, the direction of
the interaction effects from project size is less likely to be affected by such
differences.

e Few observations. There are few projects for several combinations of development
method and project size category, in particular for the non-agile projects. The low
statistical power means that tests of the statistical significance of the interaction
effect on the development method are not feasible. It also implies that there are
limitations regarding the robustness of our results and that small to medium large
differences in success rates are caused by random variance in outcomes. Our results
should consequently be understood as initial, exploratory results to be followed up
with more empirical research.

o Size vs. complexity. We categorize project size based on the project’s budget. While
the budget is likely to reflect the amount of effort spent, it does not necessarily
reflect the complexity of the project. There may consequently be relevant differ-
ences between large and simple, and large and complex software projects that our
analysis is unable to identify.

2.3 Results

The results section emphasizes key takeaways from our study, especially those related
to the connection between project size, development method and project outcome.
Table 1 gives the proportion of observations per budget and development method
category. It shows that agile and partly agile methods are frequently used even for the
largest projects. They are used in 33% and 56% of the largest projects, respectively.
While this does not say anything about the usefulness or harm of using agile methods
as project size increases, it documents that many of the software professionals involved
considered agile and partly agile development methods to be useful for larger projects.
Notice the increase in use of partly agile as the project size increases from medium

Do Agile Methods Work for Large Software Projects? 185

to large. This may suggest that some software professionals believe less in working
fully agile when projects get large.

Table 1. Proportion use of development method per budget size category

Budget size | Agile Partly agile | Not agile | # projects
Small 37% (18) | 42% (20) |21% (10)| 48
Medium 58% (15) | 19% (5) 23% (6) | 26
Large 33% (9) |56% (15) |11% (3) | 27
projects |42 40 19 101

Table 2 and Figs. 1, 2, 3, 4 and 5 show the interacting effect of development
methods on the connection between project size and:

(i) Proportion of acceptable projects (Fig. 1)
(i) Proportion of successful projects (Fig. 2)
(iii) Mean score for client benefits (Fig. 3)
(iv) Mean score for cost control (Fig. 4)

(v) Mean score for time control (Fig. 5)

The scores of the success dimensions are coded with 4 for successful, 3 for
acceptable, 2 for unsuccessful, and 1 for failed projects. This scale is, according to
measurement theory, an ordinal scale. We believe, nevertheless, that the mean scores
(which strictly speaking require at least an interval scale) give a good indication of the
typical outcome regarding client benefits, cost control, and time control.

Our results do not support the claim that projects using agile or partly agile methods
do worse than non-agile methods on larger projects. Quite the opposite, the data indicates
that large projects using agile or partly agile methods were more likely to be assessed as
acceptable than medium large projects using these methods. The non-agile projects
performed reasonably well for the smallest projects, just a little worse than the agile and
partly agile projects, but very badly on the medium and large software projects. In fact,
among the non-agile projects of medium and large size, there were no projects in our data
set that met the criterion of being perceived acceptable or better on all success criteria.
Although consisting of a small sample, only nine projects used non-agile methods for
medium and large projects; this weakly indicates that it is non-agile rather than agile
methods that have most problems with larger software projects. This result—i.e., that
non-agile methods score relatively poorly compared to agile projects and that the per-
formance difference increases as the project size increases—is similar to that reported in
the Standish Group’s Chaos Report for 2016.

For most of the measures, there were not much difference in the assessed outcome
for projects using agile and only partly agile. The most notable exceptions were pro-
jects assessed to be successful in all three dimensions (Fig. 2), wherein agile performed
better than partly agile for large, but worse for medium large projects.

186 M. Jorgensen

Table 2. Success with use of development method per budget size category

Budget size ‘ Agile Partly agile Not agile
Total success (% acceptable)
Small 72% 60% 60%
Medium 46% 40% 0%
Large 67% 60% 0%
Total success (% successful)
Small 28% 10% 10%
Medium 7% 20% 0%
Large 11% 7% 0%
Client benefits (mean score)
Small 3.5 3.1 3.1
Medium 33 3.4 3.0
Large 34 2.8 23
Cost control (mean score)
Small 32 2.9 2.9
Medium 3.5 2.8 1.8
Large 34 2.9 1.0
Time control (mean score)
Small 33 33 2.8
Medium 2.9 2.6 1.7
Large 2.8 2.9 2.5
Interaction Plot for Acceptable
Data Means
0.8 Development
method
0.7 —e— Agile
— B Partly agile
0.6 - -4 - Non-agile
0.5
§ 04 \\\ T
= \\

0.3 %

0.2 \\\

0.1-

0.0- Akt -

Small Medium Large
Budget Size Category

Fig. 1. Proportion of acceptable projects

Mean

Mean

Do Agile Methods Work for Large Software Projects?

Interaction Plot for Success

Data Means
0.30 1 Development
method
—&— Agile
0.25 —B— Partly agile
— -4 - Non-agile
0.20 |
0.15
0.10
0.05 |
0.00 |
Small Medium Large
Budget Size Category
Fig. 2. Proportion of successful projects
Interaction Plot for Client benefits
Data Means
3.50 Development
method
A\\’:\///' —e— Agile
== AN —B— Partly agile
3.25 - ~ - -4 - Non-agile
- EX
- & N
w___ N
3.00 T e
Ry N
\\ \
-
275
250
RS
Small Medium Large
Budget Size Category

Fig. 3. Client benefits

187

188

Mean

Mean

M. Jorgensen

Interaction Plot for Cost Control

Data Means
3.5 Development
method

—&— Agile

3.0 — B Partly agile
— -4 - Non-agile

25

e
2.0 T
\‘\
15- Y
1.0 2
Small Medium Large
Budget Size Category
Fig. 4. Cost control
Interaction Plot for Time Control
Data Means
3.5 Development
method

—e— Agile
— B Partly agile

3.0 — <4 - Non-agile

2.5

2.0

1.5

Small

Medium
Budget Size Category

Large

Fig. 5. Time control

Do Agile Methods Work for Large Software Projects? 189

3 Discussion and Conclusion

There are reasonable arguments both in favour and against good performance of agile
methods on large projects. An example of an argument in favour of their use is that it is
increasingly more unlikely that requirements will remain stable as the size of the
software project increases. The understanding of needs is likely to change during the
course of the project, and there will most likely be external changes leading to
requirement changes. Agile development methods, implementing a process where
change is a more integrated part, may consequently be better able to deal with the high
requirement volatility of many large projects [10, 14]. An example of an argument
sometimes used against the use of agile methods on large software projects is that the
lack of upfront planning and architectural thinking, make projects more risky with
increasing size.” Consequently, it is possible to analytically argue in favour of both
agile and more plan-driven, non-agile software development methods. To find out
which argumentation in practice is the stronger, and whether agile methods typically
are good for large projects, requires empirical evidence.

The results from this study do this and provide evidence about how projects with
agile practices perform on important success criteria. As pointed out in Sect. 2.2 there
are several threats to the validity of our results, but the results do give some evidence in
support of that the typical medium and large software projects using agile practices
perform acceptably on essential success criteria. This was not the case for typical
software projects using non-agile methods in our data set. Consequently, our data
suggests that the question is not so much whether agile methods work well for large
software projects, but rather how well non-agile software development methods work
for such projects. Large projects are inherently risky, and our data suggests that the
failure risk is reduced rather than increased with the use of agile methods instead of
non-agile methods.

References

1. Dyba, T., Dingseyr, T.: Empirical studies of agile software development: a systematic
review. Inf. Softw. Technol. 50(9), 833-859 (2008)

2. Jalali, S., Wohlin, C.: Global software engineering and agile practices: a systematic review.
J. Softw. Evol. Process 24(6), 643-659 (2012)

3. Khalid, H., et al.: Systematic literature review of agile scalability for large scale projects. Int.
J. Adv. Comput. Sci. Appl. (JACSA) 6(9), 63-75 (2015)

4. Turk, D., France, R., Rumpe, B.: Limitations of agile software processes. arXiv preprint
arXiv:1409.6600 (2014)

5. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-scale agile
transformations: a systematic literature review. J. Syst. Softw. 119, 87-108 (2016)

7 See for example: www.6point6.co.uk/an-agile-agenda, which predicts that UK is wasting 37 billion
GBP annually on failed agile projects. This number is based on a survey of CIOs, suggesting a 12%
complete failure rate of agile projects. They did not calculate the waste on failed non-agile projects.

http://arxiv.org/abs/1409.6600
http://www.6point6.co.uk/an-agile-agenda

190 M. Jorgensen

6. Dingseyr, T., et al.: Exploring software development at the very large-scale: a revelatory
case study and research agenda for agile method adaptation. Empir. Softw. Eng. 23, 490-520
(2016)

7. Lagerberg, L., et al.: The impact of agile principles and practices on large-scale software
development projects: a multiple-case study of two projects at ericsson. In: ESEM 2013.
IEEE, Baltimore (2013)

8. Ebert, C., Paasivaara, M.: Scaling agile. IEEE Softw. 34(6), 98-103 (2017)

9. Elshamy, A., Elssamadisy, A.: Applying agile to large projects: new agile software
development practices for large projects. In: Concas, G., Damiani, E., Scotto, M., Succi, G.
(eds.) XP 2007. LNCS, vol. 4536, pp. 46-53. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-73101-6_7

10. Jeorgensen, M., Mohagheghi, P., Grimstad, S.: Direct and indirect connections between type
of contract and software project outcome. Int. J. Proj. Manag. 35(8), 15731586 (2017)

11. Dingseyr, T., Fegri, T.E., Itkonen, J.: What Is large in large-scale? A taxonomy of scale for
agile software development. In: Jedlitschka, A., Kuvaja, P., Kuhrmann, M., Ménnistd, T.,
Miinch, J., Raatikainen, M. (eds.) PROFES 2014. LNCS, vol. 8892, pp. 273-276. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-13835-0_20

12. Jorgensen, M.: Myths and over-simplifications in software engineering. Lect. Notes Softw.
Eng. 1(1), 7-11 (2013)

13. Jergensen, M., Molgkken-@stvold, K.: How large are software cost overruns? A review of
the 1994 CHAOS report. Inf. Softw. Technol. 48(4), 297-301 (2006)

14. Jorgensen, M.: A survey on the characteristics of projects with success in delivering client
benefits. Inf. Softw. Technol. 78, 83-94 (2016)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://dx.doi.org/10.1007/978-3-540-73101-6_7
http://dx.doi.org/10.1007/978-3-540-73101-6_7
http://dx.doi.org/10.1007/978-3-319-13835-0_20
http://creativecommons.org/licenses/by/4.0/

Looking back on previous estimation error as a
method to improve the uncertainty assessment of
benefits and costs of software development projects

Magne Jorgensen
Simula Metropolitan,
Center for Digital Engineering
Oslo, Norway
magnej@simula.no

Abstract— Knowing the uncertainty of estimates of
benefits and costs is useful when planning, budgeting and
pricing projects. The traditional method for assessing such
uncertainty is based on prediction intervals, e.g., asking for
minimum and maximum values believed to be 90% likely to
include the actual outcome. Studies report that the
traditional method typically results in too narrow intervals
and intervals that are too symmetric around the estimated
most likely outcome when compared with the actual
uncertainty of outcomes. We examine whether an
uncertainty assessment method based on looking back on the
previous estimation error of similar projects leads to wider
and less symmetric prediction intervals. Sixty software
professionals, with experience from estimating software
project costs and benefits, were randomly divided into a
group with a traditional or a group with a looking back-
based uncertainty assessment method. We found that those
using the looking back-based method had much wider
prediction intervals for both costs and benefits. The software
professionals of both groups provided uncertainty
assessment values suggesting a left-skewed distribution for
benefits and a right-skewed distribution for cost, but with
much more skew among those using the looking back-based
method. We argue that a looking back-based method is
promising for improved realism in uncertainty assessment of
benefits and costs of software development projects.

Keywords—uncertainty assessment, software benefits and
cost, controlled experiment

I. INTRODUCTION

There is no shortage of studies of human judgement
documenting that people will give prediction intervals that
are too narrow and too symmetric when asked to use the
traditional uncertainty assessment method, i.e., the method
based on giving minimum and maximum values with,
typically, 90% confidence in including the actual value [2,
14, 18]. A typical result demonstrating the lack of
correspondence between the confidence level and rate of
including the actual effort (the hit rate) in the prediction
interval is the one in [11], where software professionals
giving traditional minimum-maximum intervals included
the actual effort only 20-40% of the time, in spite of being
instructed to be, typically, 90% sure to include the actual
effort. Even after extensive feedback and training, the
confidence level is typically much higher than the hit rate
[5]. While knowledge of the problems with the traditional
method for eliciting effort uncertainty intervals is not new,
in particular when used in situations with high uncertainty,
it is in common use and promoted, e.g., in the context of
the PERT (Program Evaluation and Review Technique)

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

tool and as part of the PMBOK (Project Management
Book of Knowledge) [12, 16]. A possible reason for the
promotion and widespread use of this method, frequently
known as three-point estimates, is that the statistical theory
behind it is sound, there are no clear alternatives, and there
is typically little on-the-job feedback to show that the
judgment-based input to the method frequently is strongly
biased [11]. Unfortunate consequences of too narrow and
symmetric uncertainty intervals are, amongst others,
unrealistic cost-benefits analyses and too low budgets.

In previous papers we suggested and empirically
evaluated an alternative method, based on the assumption
that the distribution of the estimation accuracy of earlier,
similar, software projects can be used to predict the
uncertainty of new projects [6, 8-10]. Assume, for
example, that a software professional wants to assess the
uncertainty of a project that has been estimated to cost
around 1 million USD. He or she looks back on estimation
error experience from similar projects (memory-based or
based on actual estimation error measurement) and reports
that only 20% of them cost less than the estimated cost and
around 10% cost more than twice the estimated cost. The
software professional may be asked to add more empirical
error data to provide the full empirical error distribution,
but even these two data points (p20 = 1 mill. USD and p90
= 2 mill. USD) are sufficient to establish an uncertainty
distribution, given the selection of a proper non-symmetric
distribution belonging to the location-scale family [3, 13],
e.g., a log-normal or gamma distribution. Figure 1 displays
the log-normal distribution based on the above two
estimation error data points. The cumulative error
distribution is displayed in Figure 2. Figure 2 shows, for
example, that the p50 (the value it is 50% likely to
overrun) is around 1.3 mill. USD.

The results when using this alternative uncertainty
assessment method have been good, suggesting increased
realism compared to the traditional method [6, 17].

This paper extends our previous evaluations of the
outlined alternative method by adding an analysis of the
uncertainty assessment of benefits and of the benefits to
costs ratio (return on investment) of software projects. In
addition, the paper, compared to the previous papers, has a
more explicit focus on differences in the skewness of the
distributions provided by the traditional and the alternative
uncertainty assessment method.

0 1000000 2000000 3000000

Fig. 1. Probability density cost distribution (log-normal)

100 %
80 % /
60 % /
40 % /

20%

~

0%

0 1000000 2000000 3000000

Fig. 2. Cumulative cost distribution (log-normal)

The hypotheses to be tested are the following:

HI1: Those asked to look back (using the alternative
method) will give wider and more /eft-skewed uncertainty
intervals for software development benefits.

H2: Those asked to look back (using the alternative
method) will give wider and more right-skewed
uncertainty intervals for software development costs.

H3: The uncertainty assessment of those asked to look
back (using the alternative method) will result in a lower
benefits-to-costs ratio (return on investment) for software
development costs.

The motivation for H1 and H2 is that we expect that
software professionals instructed to look back will be
reminded that much higher benefits and much lower costs
than, respectively, the estimated benefits and costs are rare.
Much lower benefits and much lower costs than estimated
are, on the other hand, not uncommon. H3 will be true if
HI1 and H2 are true, but it is nevertheless interesting to
examine on its own. Our expectation is that the difference
in the expected benefits-to-costs ratio between those using
the traditional and the alternative uncertainty assessment
method is substantial.

II. METHOD

The participants were software professionals, mainly
managers and projects leaders, attending a seminar on
benefits management. The software professionals were
first instructed to indicate their level of experience in

benefits and costs estimation on a scale from 0 (none) to 5
(very high). Of the total of 65 responses received, from
around 100 seminar participants, five had no experience
with either costs or benefits management. These were
removed from the analysis, leaving 60 responses for our
analysis. The median experience level of the remaining
participants was 3 (medium high) for benefits and 3 for
costs estimation.

Following their responses on their experience level, the
participants read the following description of a scenario
based on a real-life software project (translated from
Norwegian):

Digital solution for planning applications for
construction work — uncertainty of costs and benefits

The municipal council of Oslo has decided to develop an
IT system that will ease the planning applications of the
non-professional and professional actors of the
municipality desiring to build houses and other
COnStructions.

The planning applications should, after secure login and
selection of the relevant application type, be pre-registered
with all the information the municipality already has about
the person, company or property the application concerns.
The field of the application where information about the
construction work is to be provided should include links to
the relevant regulations.

The user’s application input will be checked automatically
(where possible) with respect to the regulation adherence
and correctness of the application type. Warnings should
be provided if any non-adherences are found. The users
should have the opportunity to download relevant maps,
and have the functionality to put their own constructions
on that map. All application information, e.g., feedback
and decisions from the municipality, should be done
through the software system. Status updates should in
addition be given using secure email.

The estimate of the expected benefits — given by
experienced people at the municipality — is that the
municipality will save 4 man-years per year when the
system has been implemented. This will mainly be a
consequence of the higher quality of the planning
applications received and the need for fewer iterations
before an application can be approved. In addition, it is
expected that the users will save about 10 man-years each
year through a simplified application process. Together
with other quantitative benefits (summed over 10 years)
the expected total benefit is expected to be around 120
million Norwegian Kroner. Non-quantitative benefits such
as happier users and less illegal construction work are not
included in the calculations.

The estimate of the expected costs — given by an external
provider with relevant experience, is estimated to be
around 65 million Norwegian Kroner.

The above information is clearly not sufficient to say much
about the realism of the benefits and costs estimates. Try,
nevertheless, based on your own experience and other
relevant knowledge with similar projects, to assess the
uncertainty of the estimates of the benefits and of the costs.

The participants were randomly divided into two
groups: traditional and alternative uncertainty assessment.
These two groups had different instructions about the
format of their uncertainty assessments.

Traditional Group (minimum-maximum values)
Uncertainty of the benefits estimate

Based on my experience with similar projects, I believe
that the actual benefits (with 90% certainty) will be in the
interval: (minimum) and (maximum)
Norwegian Kroner.

Uncertainty of the costs estimate

Based on my experience with similar projects, I believe
that the actual costs (with 90% certainty) will be in the
interval: (minimum) and (maximum)
Norwegian Kroner.

Alternative Group (looking back on previous benefits
and costs estimation error)

Uncertainty of the benefits estimate

Input the proportion of similar (they do not have to be very
similar), already completed, software projects for which
you believe the benefits achieved were:

Less than half of the estimated benefits: %

(Proportion of projects: 0%=none ... 100%=all)

Less than the estimated benefits: %
(Proportion of projects: 0%=none ... 100%=all)

More than twice the estimated benefits: %

(Proportion of projects: 0%=none ... 100%=all)
Uncertainty of the costs estimate

Input the proportion of similar (they do not have to be very
similar), already completed, software projects for which
you believe the actual costs were:

More than twice the estimated costs: % (Proportion
of projects: 0%=none ... 100%=all)

More than the estimated costs:
of projects: 0%=none ... 100%=all)

% (Proportion

Less than half the estimated costs: % (Proportion
of projects: 0%=none ... 100%=all)

The key difference between the two groups was that
the first group used the traditional minimum-maximum
uncertainty assessment method, with a given confidence
level (here 90%), while the second were asked to assess
the actual uncertainty (as indicated by their estimation
error) of previous software projects. We suspected, as
described in Section 1, that the traditional method would
lead to the assessment of substantially less and more
symmetric uncertainty than the uncertainty assessment
method based on those looking back on the error, and
implicitly the uncertainty, of similar, previously
completed, software projects.

III. RESULTS

The assessments of the two groups differed greatly,
both in terms of degree of uncertainty and in the amount of
right- and left-skewedness of the implied uncertainty
distributions. Tables I and , together with Figures 3-6
display key characteristics of the uncertainty assessments.
For readability purposes, we translated the original
uncertainty values into percentages of the estimates, i.e., in
percent of the benefits estimate of 120 mill. Norwegian
Kroner and of the costs estimate of 65 mill. Norwegian
Kroner.

We have, for simplicity, assumed that a 90%
confidence effort interval implies that the minimum is
interpreted as the 5% level (p5), where it is only 5% likely
that the actual value will be equal or less, and that the
maximum is interpreted as the 95% level (p95), where it is
95% likely that the actual value will be equal or less. This
is a common, although not necessary, interpretation of a
90% confidence effort prediction interval.

The interval width is measured as: (p95-p35)/estimate,
where p5 and p95 are the values directly provided by the
software professionals in the traditional method group, and
the fitted values, assuming a PERT-distribution (using the
tool @risk), for those in the alternative method group. The
choice of a PERT-distribution to calculate the p5 and p95
for those in the alternative method group is based on the
fact that this is a method frequently used in effort
uncertainty assessment situations and that it enables us to
compare the same pX-values for the two uncertainty
assessment methods. The estimates are the same for the
two groups, i.e., 120 mill. Norwegian Kroner for the
benefits and 65 mill. Norwegian Kroner for the costs.

The interval skew 1is measured as: distribution
mean/estimate, where the distribution mean is calculated
using the PERT-formula: (Minimum + 4 x Estimate +
Maximum). The minimum and maximum values are, as
before, those provided by the software professionals in the
traditional group and the fitted ones in the alternative
uncertainty assessment group. The PERT-formula assumes
that the Estimate is the mode (the most likely value). While
this was not clear from the scenario description (Section
2), the intended interpretation of the benefits and costs
estimate was not described, and it makes no large
difference for the comparison of the two approaches. A
skew-value larger than one, i.e., when the mean (expected
value) of the distribution is higher than the estimate,
indicates a right-skewed distribution, while a skew-value
less than one indicates a left-skewed distribution. Notice
that our measure of interval skew deviates from the
traditional measure of distribution skew based on the
difference between mode and mean.

TABLE L TRADITIONAL UNCERTAINTY ASSESSMENT
(MEDIAN VALUES)
ncertain
Uncertainty Benefits Cost
assessment

Minimum (p5) | 67% of estimate 81% of estimate

Maximum 125% of estimate 154% of estimate
(p95)

Interval width 0.54 0.69

Right-/left- 0.95 (weak left-skew) 1.08 (weak right-skew)
skew

TABLE II.

ALTERNATIVE UNCERTAINTY ASSESSMENT

(MEDIAN VALUES)
Uncertainty assessment Benefits Cost
Probability of actual value | 30% 1%
less than half of estimate
Probability of actual value | 65% 25%
less than estimate (=100% - 75%)
Probability of actual value | 35% 75%

more than estimate

(=100% - 65%)

Probability of actual value | 5% 30%
more than twice the estimate

Fitted minimum (p5) 22% 61%
Fitted maximum (p95) 200% 325%
Interval width 1.78 2.64

Right-/left-skew

0.89 (weak left-
skew)

1.66 (strong
right-skew)

Figures 3—6 display the benefits and costs uncertainty
distributions of the groups. The uncertainty distributions
are based on fitting the distribution to the three values p5,
estimate (interpreted as the mode) and p95. The values are
transformed so that: i) The value 1.0 is the estimated
benefits in Figures 1 and 3, and the estimated costs in
Figures 2 and 4, and ii) The values are in percentage of the
estimate, e.g., the value 1.4 denotes a value 140% of the
estimate. For each graph, the p5 (minimum) and p95
(maximum) values are indicated.

y
w n ?Q ~N xR R
o o o o o o

d
—

- o~ o =+
— — —

Fig. 3. Benefits distribution for traditional uncertainty assessment

Q n
o

(=3 w wn wn
o -

% QU 13 QU X QU
- ~ ~) o <

Fig. 4. Costs distribution for traditional uncertainty assessment

2 xR QU ~N x ey < U N
o - - - - - ~ ~

Fig. 5. Benefits distribution for alternative uncertainty assessment

5 90.0%

Fig. 6. Costs distribution for alternative uncertainty assessment

As can be seen from the values at the x-axes of the
graphs and in the tables, there is a substantial difference in
the assessed uncertainty between the traditional and the
alternative method. Both H1, wider distributions, and H2,
more left-skewed benefits distribution and, more right-
skewed cost-distribution, when using the alternative
uncertainty assessment method are consequently
supported.

IV. DISCUSSION

A. Which method led to the most realistic assessments?

A key question is which of the uncertainty approaches
led to the most realistic assessment. While, in this case, the
answer to this would require that we knew the outcome of
the (still on-going) project!, we argue that there are at least
two reasons to believe that the alternative approach gave
the most realistic assessments:

e Looking back on previous experiences, sometimes
called the use of “reference class” estimation or
“analogy”-based estimation, when estimating software
costs and benefits is documented to give more realism
[4, 7]. While this has mainly been documented for cost
estimates, we find it reasonable to assume that a

U'n fact, we would not know the realism of the uncertainty assessments
even if we knew the outcome of the project. In order to know the realism
of the uncertainty assessments we would need many uncertainty
assessments and actual outcomes, and to compare the confidence level or
probability with the actual hit rate. After all, being 90% confident means
that one will be wrong in 10% of the cases.

similar realism improvement will be present in
uncertainty assessment contexts.

e Empirical data suggest that the uncertainty of a project
of the type used as the case in this study is high.
Software development projects in Norway were, for
example, found to have an average costs overrun of
67% for projects with a public client [15]. Other
surveys, for example [1], find that costs overrun
distributions are strongly right-skewed, with 41% of
data management projects having a costs overrun of
more than 25%, and many of them 2-3 times more.

A further argument in favour of the alternative
uncertainty assessment method is that the assessments
were based on the respondents’ actual experiences about
typical estimation error and bias, e.g. how typical over-
estimating the benefits and under-estimating the costs of
similar projects were. The respondents were randomly
divided into groups, which implies that the group using the
traditional method probably is likely to have had, as a
group, about the same experience regarding costs and
benefit estimation error. In other words, those using the
traditional method assessed the uncertainty to be much
lower than what they had probably experienced in similar
projects prior to this one. As far as we can judge, there was
nothing in the project description that indicates a
substantially lower complexity or risk of this project
compared to other governmental projects of similar size
and type.

B. Implications for benefits-to-costs ratio (test of H3)

An interesting implication of our results is that the
benefits-to-costs ratio (return on investment) analysis
including uncertainty would give very different values for
the two approaches.

As a benchmark value, we start with the non-stochastic
(statistically naive) benefits-to-cost analysis, i.e., without
taking uncertainty into consideration. Here we use the
estimated benefits and costs and get a return on investment
of 120 mill. Norwegian Kroner / 65 mill. Norwegian
Kroner = 1.85, i.e., the expected benefits-to-costs ratio is
strongly positive. Very often, as far as we have
experienced, this non-stochastic value is the one used
when making decisions about whether to start a software
project or not.

Then we use at the uncertainty assessment of those in
the traditional group, using the benefit and costs
distributions based on the median assessments of p5 and
p95, the PERT-distribution and a Monte Carlo simulation
to simulate the ratio of benefits to costs (10,000
simulations). We then get an expected return of investment
of 1.6 (see Figure 7), i.e., the expected benefits-to-costs
ratio is still strongly positive, although slightly less than
with the non-stochastic calculations.

Finally, we use the uncertainty assessment of those in
the alternative group, using the median probability
assessments (PERT-fitted pS and p95) and simulate the
benefits-to-costs ratio using Monte Carlo simulation
(10,000 simulations). Now the expected benefits-to-costs
ratio is as low as 1.2, see Fig8. In this case, the probability
of making no profit at all is as high as 40%. In other words,
using the alternative, arguably more realistic, uncertainty

analysis makes it much less obvious that the project is
worth starting.

90.0% 5.0%

10~

f:l o o~ - =] o«

Fig. 7. Benefit / Costs — traditional uncertainty assessment

90.0% 5.0%
1n =) 1 o 1 o 1n
o — — o o (3} (2]

Fig. 8. Benefits / Costs — alternative uncertainty assessment

C. Limitations

There are several limitations to take into consideration
when interpreting and using the results reported in this
experiment. While the results are consistent with previous
results on the traditional uncertainty assessment approach,
i.e., that it leads to too narrow and symmetric intervals, we
cannot exclude that those using the traditional intervals had
the most accurate assessment of the underlying
uncertainty. This can only be assessed when aggregating
assessments and outcomes over many projects. What we
can be confident about, however, is that those using the
traditional uncertainty assessment were much more
optimistic about the uncertainty than would be warranted
by similar projects. We interpret this as a high likelihood
of those in the traditional group being over-optimistic
about the uncertainty.

The generalizability of the results to other project
contexts and other software professionals is to a large
extent unknown, as neither the project nor the participants
were selected to represent a particular population. When
looking at the roles, experience level and organizations of
the participants (using the list of participants of the
seminar), however, we see that they represent relevant
roles. They were, with a few exceptions, software
managers on the client side or project managers on the

provider side. The fact that they spent time visiting a
seminar on benefits management, and had previous
experience in estimating benefits and costs, indicates that
they may have been more than averagely interested and,
perhaps, more than average skilled in this topic.

We have assumed an underlying PERT-distribution for
our analyses. The uncertainty values and results are
affected by this choice. We evaluated the use of log-
normal and gamma distribution, which gave similar
results, i.e., there is little reason to believe that the choice
of underlying uncertainty distributions had a large impact
on the result.

V. CONCLUSIONS

Software professionals asked to give benefits and costs
uncertainty assessments based on the estimation error they
recalled having experienced on similar software projects
(termed the alternative method) gave wider uncertainty
intervals than those using the traditional minimum—
maximum 90% confidence intervals. It also led to more
left-skewed benefits distributions and more right-skewed
costs distributions. The difference in assessment of
benefits and costs uncertainty led to a substantial
difference in the assessment of the profitability of the
project, i.e., the benefits-to-costs ratios were highly
favorable using the traditional method while much less so
for the alternative method.

Assuming that the recalled projects were similar in
terms of uncertainty to the one to be assessed, the
alternative method is, we argue, likely to have led to more
realistic uncertainty assessment. Previous empirical results
on the use of reference-class and analogy-based, i.e.,
looking-back based, estimation models for software
development effort, support the suggestion that looking
back on previous experience-based methods leads to more
realistic judgments.

We plan to conduct more studies comparing the
traditional and different variants of the alternative
uncertainty assessment method, where we will vary the
elicitation format and, preferably, compare with the actual
benefits achieved and costs spent.

REFERENCES

[1] Budzier, A. and B. Flyvbjerg, Overspend? Late?
Failure? What the data say about IT project risk
in the public sector. Commonwealth Governance
Handbook, 2012. 13: p. 145-157.

[2] Connolly, T. and D. Dean, Decomposed versus
holistic estimates of effort required for software
writing tasks. Management Science, 1997. 43(7):
p. 1029-1045.

[3] Cook, 1.D., Determining distribution parameters
from quantiles. 2010, UT MD Anderson Cancer
Center Department of Biostatistics Working
Paper Series.

[4] Flyvbjerg, B., Curbing optimism bias and
strategic misrepresentation in planning:
Reference class forecasting in practice. European
Planning Studies, 2008. 16(1): p. 3-21.

[5] Gruschke, T.M. and M. Jorgensen, The role of
outcome feedback in improving the uncertainty

[10]

[11]

[12]

[13]

[15]

[18]

assessment of software development effort
estimates. Acm Transactions on Software
Engineering and Methodology, 2008. 17(4).
Jorgensen, M., Realism in assessment of effort
estimation uncertainty: It matters how you ask.
IEEE Transactions on Software Engineering,
2004. 30(4): p. 209-217.

Jorgensen, M., Top-down and bottom-up expert
estimation of software development effort.
Information and Software Technology, 2004.
46(1): p. 3-16.

Jorgensen, M., The Ignorance of Confidence
Levels in Minimum-Maximum Software
Development Effort Intervals. Lecture Notes on
Software Engineering, 2014. 2(4).

Jorgensen, M. and D.LK. Sjeberg, An effort
prediction interval approach based on the
empirical distribution of previous estimation
accuracy. Information and Software Technology,
2003. 45(3): p. 123-136.

Jorgensen, M. and K.H. Teigen. Uncertainty
Intervals versus Interval Uncertainty: An
Alternative Method for Eliciting Effort
Prediction Intervals in Software Development
Projects. in International Conference on Project
Management (ProMAC). 2002. Singapore.
Jorgensen, M., K.H. Teigen, and K. Molgkken,
Better sure than safe? Over-confidence in
Judgement based software development effort
prediction intervals. Journal of Systems and
Software, 2004. 70(1-2): p. 79-93.

Kerzner, H., Project Management: A Systems
Approach to Planning, Scheduling, and
Controlling. 2003: John Wiley & Sons.

Little, T., Schedule estimation and uncertainty
surrounding the cone of uncertainty. Software,
IEEE, 2006. 23(3): p. 48-54.

McKenzie, C.R.M., M. Liersch, and I. Yaniv,
Overconfidence in interval estimates: What does
expertise buy you? Organizational Behavior and
Human Decision Processes, 2008. 107: p. 179-
191.

Molgkken, K., M. Jargensen, S.S. Tanilkan, H.
Gallis, A.C. Lien, and S.E. Hove, Project
Estimation in the Norwegian Software Industry-A
Summary. . 2004: Simula Research Laboratory,
3.

PMI, Guide to the Project Management Body of
Knowledge (PMBOK(r) Guide)-Sixth Edition.
2017.

Winman, A., P. Hanson, and P. Jusling,
Subjective probability intervals: how to reduce
overconfidence by interval evaluation. Journal of
experimental psychology: learning, memory and
cognition, 2004. 30(6): p. 1167-1175.

Yaniv, 1. and D.P. Foster, Precision and
accuracy of judgmental estimation. Journal of
Behavioral Decision Making, 1997. 10(1): p. 21-
32.

Relations between Project Size,
Agile Practices and Successful
Software Development

Magne Jorgensen

Simula Metropolitan, Oslo, Norway

ABSTRACT. The use of agile methods in the execution of large-scale
software development is increasing. To find out more about the effect of
this on project performance, information was collected about 196
Norwegian IT-projects. Increased project size was associated with
decreased project performance for both agile and non-agile projects, but
the projects using agile methods had better performance than the non-agile
projects for all examined project size categories. Flexible scope, frequent
deliveries to production, a high degree of requirement changes and more
competent providers are candidates to explain the better performance of
agile projects.

Keywords: agile methods, project performance, project characteristics

A traditional response to increased size and complexity of work is to implement more
planning and management formalism [1]. Agile software development methods, on the
other hand, try to remove or reduce much of the traditional project management
formalism. Does this mean that agile, as indicated in [3] mainly work for smaller
projects? Or do agile methods work well for larger projects as suggested in [2, 5]. The
available empirical evidence is mixed and does not allow strong claims. In addition, the
evidence does not give much insight into when, if at all, agile methods tend to work well
for large projects. This shortage of empirical evidence motivated the survey reported in
this paper, aiming at answering the following two questions:

1) How well do larger agile software projects perform compared to smaller projects
and non-agile projects?

2) Which agile practices and characteristics are connected with better performance?

The Survey

Respondents and data collection

The survey participants were Norwegian software professionals visiting three different
seminars on project management in 2016 and 2017. The software professionals provided
information about their last completed projects. 216 responses were received. After
removing responses without the minimum information needed for the analysis, i.e. the
budget size category, the development method and the perceived performance of the
project, there were 196 unique responses remaining. The project information was given
anonymously, in Norwegian, using the survey tool Qualtrics. There was a “don’t know”
option for all project information items to ensure that the respondents only answered
when they felt they had sufficient knowledge.

The software professionals had on average 13 years of experience, with 70% having 8 or
more years. 69% of the respondents were from the provider side and 31% were from the
client side. 71% had technical roles in the reported project, e.g. architects or developers,
and 29% had managerial roles, e.g. product owners, team leaders and project managers.

Project characteristics

The project characteristics requested from the participants is described in Table 1. The
included variables are those that were found to distinguish between successful and failed
software projects in an earlier survey [4]. To avoid too few observations for some
categories the analyzed category “high” (“low”) includes both “very high” (“very low”)
and “high” (“low”) responses.

Table 1. Project characteristics™®

Characteristic Categories
Budget size (used as Small (<1 mill Euro)
measure of project size)? Medium (1-10 mill Euro)
Large (>10 mill Euro)
Development method? Agile
Non-agile
Requirement volatility3 High (>30% changes)

Low (<=30% changes)

Perceived flexibility of scope High

Low
Perceived detail of upfront High
project plan Low
Perceived detail of upfront High
requirement specification Low
Frequency of deliveries to >4 per year

production* <=4 per year

Contract type Time & materials

Fixed price
Perceived provider High
competence Low
Perceived client competence High

Low

*: The full questionnaire is available to interested readers upon request.

1: The budget size categories small, medium and large are the same as those found to separate the effect of agile
practices in [5].

2: There is no commonly accepted definition of what it means to work agile. I used the respondents’ own perception of
whether they worked agile or not in the first analysis and added analyses of the effect of different agile practices and
characteristics in the second analysis.

3: The threshold of 30% is based on what was closest to the median level of perceived amount of requirement change
of the projects.

4: The original categories were “none”, “1-4” and “more than 4”, where the two first were joined. Notice that even non-
agile projects, e.g., incremental or timeboxing-based projects, may have deliveries to production during the project
execution.

Project performance

After describing characteristics of the project, each participant assessed the performance
of their last completed project, as he/she perceived it, using the scale: very successful —
successful — acceptable — problematic — very problematic for each of the success
dimensions: client benefits (value), cost control, time control, productivity and technical
quality.

To define the project’s overall performance, we used the following categorization:

Successful: Successful or better on all five success dimensions,
Acceptable: Acceptable or better on all five success dimensions
Failed: Very problematic on at least one success dimension.

Data collection challenges

Different participants may be involved in the same projects, leading to the possibility of
duplicate projects in our data set. The variance in organizations of the participants, as
analyzed from the list of seminar participants and the typically large size of their
organizations, indicates that the number of duplicates, if any, is very low.

Participants from the client and the provider side, as well as participants in different roles,
may have different knowledge and perceptions of a project’s performance. While this
subjectivity may affect the accuracy of the reported success and failure rates, it is less
likely to change the direction of the connection between development methods, project
size and project performance.

An examination of the list of participants shows that the majority of them belong to or
worked for large organizations with mainly administrative software applications.
Consequently, the results may mainly be valid within this context.

Results

In total, 16% of the software projects were categorized as successful, 52% as acceptable
and 7% as failed. The small and medium sized projects had the best performance with
15% and 22% categorized as successful, 55% and 50% as acceptable, and 7% and 4% as
failed, respectively. The larger projects had 5% categorized as successful, 41% as
acceptable and 14% as failed. The decrease in project performance with increased project
size corresponds to findings in other studies, e.g., [6].

Seventy-four percent of the projects were categorized as agile. These projects, see Table
2, had better average success rate than the non-agile projects for all three size categories.
Figure 1 displays this interaction effect for projects with acceptable project performance.
An analysis using a general linear model (GLM) with the variable development method
(agile and non-agile) nested into the variable budget size (small, medium and large) gives
a that the difference in proportion acceptable projects is statistically significant, one-sided
tests, for small (p<0.01) and medium (p=0.03) sized projects, but not, due to the lower
number of observations, for large sized projects (p=0.12).

Table 2. Relationship between budget size category, development method and project
performance*

Project Development Small (n=120) Medium (n=54) Large (n=22)
performance method
Successful (n=31) Agile 19% 24% 7%
Non-agile 0% 19% 0%
Acceptable Agile 65% 58% 50%
(n=102)
Non-agile 19% 31% 25%
Failed (n=13) Agile 2% 3% 14%
Non-agile 23% 6% 13%

* The percentages are the proportion of successful, acceptable and failed projects for projects same budget size
category and same development method.

0.7

.«
0.6 T
—e__
o ——
=] -
3] S—
- - ——
% 0.5 Development g
3 method
[—&— Agile
g — B Non-agile
£ 0.4
o
Q
o
a
| B
0.3 e T =
-~ T~ -
- T -m
-
. -
0.2 =
Small Medium Large

Budget category

Figure 1. Interaction plot of projects with acceptable performance

The analysis of practices and context characteristics (factors) potentially connected with
better performance of agile projects was completed as follows. First, the factors more
frequently observed in agile than in non-agile projects were identified through a chi-
square analysis. Due to more frequent use these factors may explain the better
performance of agile projects even if they have a similar, positive effect on non-agile
projects. Second, the connection between all factors and acceptable project performance
(the largest performance category) was analyzed.

The factors associated with a statistically significant (here set as p<0.05) higher
proportion of agile projects were high requirement volatility (50% of agile projects and
33% of non-agile projects had more than 30% requirement changes, p=0.04), frequent
deliveries to production (68% of agile projects and 32% of non-agile projects had more
than four deliveries to production per year, p<0.01) and flexible scope (79% of agile
projects and 47% of non-agile projects had a perceived high degree of scope flexibility).
There were no statistically significant differences in proportion of projects with detail of
project plan (60% of agile and 53% of non-agile projects were perceived to have little
detail in project plans, p=0.75), detail of requirement specification (55% of agile and
54% of non-agile projects were perceived to have little detail in requirement
specification, p=0.96), and contract type (51% of agile and 58% of non-agile used fixed
price contracts, p=0.53).

Table 3 displays the results for the proportion of projects with acceptable performance for
the analyzed factors. Notice that the sum of observations is lower than the full dataset of
196 projects due to “don’t know” answers.

Table 3. Proportion projects with acceptable performance”

Factor Category Agile (n=146) Non-agile (n=50)
Requirement High (n=80) 58% 13%
volatility Low (n=97) 61% 29%
Delivery >4 per year (n=99) 70% 25%
frequency <=4 per year (n=60) 49% 21%
Scope High (n=71) 85% 33%
flexibility Low (n=26) 50% 40%
Detail of High (n=59) 67% 18%
project plan Low (n=81) 53% 21%
Detail of req. High (n=63) 55% 13%
spec. Low (n=76) 61% 26%
Contract type Fixed price (n=66) 60% 17%
Time & materials 60% 23%
(n=60)

* The percentages are the proportion of acceptable projects for projects with same factor category and same
development method. There are too few observations (low statistical power) for some of the combinations of categories
to conduct meaningful tests of statistical significance for the interactions in Table 3. The differences should
consequently be interpreted as indications of relationships, not as strong evidence.

The results in Table 3 suggest that experiencing high requirement volatility did not
greatly affect the proportion of acceptable agile projects, while the proportion of
acceptable non-agile projects decreased from 29% to 13%. Frequent delivery to
production seems to have had a much stronger positive connection with better
performance for agile than for non-agile projects. This practice was also more common
among agile projects and may therefore contribute to a better performance of agile
projects both by being more frequently used and by having a stronger positive
connection. Higher scope flexibility was connected with much higher proportion of
acceptable performance for agile projects, and a lower proportion for non-agile projects.
The factors including detail of project plan, detail of requirement specification and
contract type did not contribute much to explaining an improved performance of agile
projects.

Table 4 suggests that as the project size increased from small to medium/large a high
degree of requirement changes further increased the superior performance of the agile
projects. A higher delivery frequency was associated with larger increase in acceptable
agile than in acceptable non-agile projects. Similarly, higher flexibility of scope was
associated with increased performance of small agile and decreased performance of small
non-agile projects.

Table 4. Proportion projects with acceptable performance, per size category*

Factor Category Agile Non-agile
Small Medium/large Small Medium/large
(n=94) (n=52) (n=26) (n=24)

Requirement High (n=80) 62% 54% 13% 14%

volatility Low (n=97) 65% 47% 20% 38%

Delivery High (n=99) 73% 65% - 38%

frequency Low (n=60) 54% 41% 13% 27%

Scope High (n=71) 86% 84% 14% -

flexibility

Low (n=26) 55% 40% 57% -

* The percentages are the proportion of acceptable projects for projects with same factor category, budget size category
and development method. There are too few observations (low statistical power) in some of the categories to conduct
meaningful tests of statistical significance for the interactions in Table 4. The differences should consequently be
interpreted as indications of relationships, not as strong evidence. The fields with “-* have fewer than five observations,
due to missing data about a project or few occurrences, and the proportions were not calculated.

If agile projects attract more competent providers or clients, this may contribute to the
difference between agile and non-agile projects. An analysis of the project data
demonstrated that that the agile software projects were indeed perceived to have more
competent clients and providers (Chi-square test of independence gives p=0.02 and
p=0.01, respectively). A binary logistic regression model with the elements client
competence (high vs. low), provider competence (high vs low), development method
(agile vs non-agile), requirement volatility (high vs. low), delivery frequency (high vs.
low) and scope flexibility (high vs low), using the performance measure acceptable
(1=acceptable, 0=not acceptable) as the dependent variable gives a 5.7 and 2.4 times
higher likelihood of observing an acceptable project when having a high compared to a
low or medium competent provider (p=0.046) and client (p=0.27, not statistically
significant), respectively. More studies are needed to analyse how client and provider
competence interact with agile practices and contexts to explain differences in project
performance.

Conclusions

The survey of 196 Norwegian software projects provides empirical support for the use of
agile methods on larger as well as smaller software projects, especially when including
flexible scope and frequent delivery to production, and in contexts with high requirement
changes. A contributing factor seems to be that agile projects tend to have more
competent providers.

References

[1]
[2]

[3]

[4]

[3]

[6]

Child, J., Predicting and understanding organization structure. Administrative
Science Quarterly, 1973. 18(2): p. 168-185.

Dingseyr, T., N.B. Moe, T.E. Fegri, and E.A. Seim, Exploring software
development at the very large-scale: a revelatory case study and research agenda
for agile method adaptation. Empirical Software Engineering, 2018. 23(1): p. 1-
31.

Dybéa, T. and T. Dingseyr, Empirical studies of agile software development: A
systematic review. Information and software technology, 2008. 50(9): p. 833-859.
Jorgensen, M., A survey on the characteristics of projects with success in
delivering client benefits. Information and Software Technology, 2016. 78: p. 83-
94.

Jorgensen, M. Do Agile Methods Work for Large Software Projects? in
International Conference on Agile Software Development. 2018. Porto, Portugal:
Springer.

Sauer, C., A. Gemino, and B.H. Reich, The impact of size and volatility on IT
project performance. Communications of the ACM, 2007. 50(11): p. 79-84.

Biography: Magne Jorgensen is professor in software engineering at the University of
Oslo and chief research scientist at Simula Metropolitan. He has extensive industry
experience as consultant and manager and currently serves at the Norwegian
digitalisation board where he advises governmental software projects. His research
interests include project management, evidence-based software engineering and expert
judgment. His recent book on effort estimation can be downloaded for free
from: tinyurl.com/timepredictions.

VEDLEGG 2

When is agile better?

How the use of agile and autonomous teams
affect success differently in different contexts
(and other results)

&)

Magne Jgrgensen

Simula Metropolitan

Center for Digital
Engineering

\\‘ -

We analysed the connectionsbetween
software project outcome and the
followingfactors:

¢ Development method

 Contract type

* Sourcing strategy

* Requirement volatility

* Project size

* Benefits management

* And alittle bit about the use of autonomous teams

Philosophy: Success and failure patterns, not factors

25/5/18

25/5/18

25/5/18

25/5/18

It may not fit all types of tasks.
Here: The organization of pyramid construction (Giza)

Building a pyramid

Conway’s law \ with autonomous

(extended): 7000 § team (more than
crew N 10.000 workers), no

The structure of the " clear architecture,

organization affects : no standarized work

the product, and 1,000 gang 1,000 gang processes and

what is produced \T':{‘?U '”\";“‘Fﬂl‘f‘l*.‘” - detailed plans

affects the Menkaure Menkaure .

organizational B N=%1 CSledi :,Vfout::btffﬂzgi:{;:t.

structure. %

200 20 200 200 1,., -n)u 2AX 20 200 _?\ﬂ

p]l p?:"ll)' ! h\\ phyle J|\ phyie JI I n\c- ,’
Litte' “Last ' “Asiatic’ ‘G

%HE =~ th= ‘3}&:?‘17 %téo

(20 men x 10 in each phyle) (20 men x 10 in each phyk)

IS SOFTWARE DEVELOPMENT MORE
LIKE GAME HUNTING IN TEAMS OR

PYRAMID CONSTRUCTION?

(DOES SOFTWARE DEVELOPMENT USUALLY BENEFIT
FROM THE USE OF AUTONOMOUS TEAMS?)

| GUESS YOU ALREADY THINK YOU KNOW THE ANSWER
ONTHIS, BUT LET’S GET EMPIRICAL. NEVER TRUST CLAIMS
WITHOUT EMPIRICALDATA.

Does it for example end up with (autonomous)
teams fighting each others (as in a rugby scrum)

Survey design ... (unpublished)

* Survey of 101 software projects (their last project, both provider and client
respondents)
* Do you consider the development team(s) of the project to have been
“self-organized”?
— Yes, no, don’t know (don’t know answers removed from analysis)
* 45% reported that the team(s) were self-organized
— The question forces a dichotomy and is a subjective assessment.
— Assumes that self-organized” is close to what people will think of as
autonomous.

» The providers reported much higher proportion of self-organized teams
than the clients (73 vs 23%).
— Indicates adifferences in use of terminology, lack of knowledge or
something else ...

25/5/18

25/5/18

Yes! Especially when working agile with frequent
deliveries to client

Project outcome

Agile NonAgile
Aut NonAut Aut NonAut
10 Acceptable Success

0.8 —_
0.6
[]

0.4

0.2 -

0.0

Aut NonAut Aut NonAut
Agile NonAgile

Individual standard deviations are used to calculate the intervals.
Agile = Perceived as “very agile”/“agile” and with freq. deliveries during the project execution.

Acceptable = Perceived as acceptable or better wrt client benefits, time control and cost control
Successful = Perceived as successful wrt client benefits, time control and cost control

What about scaling? Does autonomous
teams on large projects lead to chaos?

25/5/18

It seems to scale well ...

Project outcome

Small Medium Large
NonAut Aut NonAut Aut NonAut Aut

10 Acceptable Success

0.8

0.6

0.4

L
0.2
I ! I
0.0
SelvOrg NonAut Aut NonAut Aut NonAut Aut
Size Small Medium Large

Small =< 1 mill Euro, Medium = 1-10 mill Euro, Large => 10 mill Euro

Selected results (related to agile)
from our surveys

(! I; .

25/5/18

Information and Software Technology

£l Volume 78, October 2016, Pages 83-94 §
ELSEVIER

A survey on the characteristics of projects with success
in delivering client benefits

Magne Jorgensen &

Show more

https://doi.org/10.1016/j.infsof.2016.05.008 Get rights and content

25/5/18

Similarly, ina more recent study (unpublished), we found that
the presence of frequent deliveries in agile projects was mainly
important when connected with high requirement volatility

Requirement volatility, frequency of delivery and success for agile projects

Delivery Frequency
0.30 ~n @ Four or less per year
— -m— - More than four per year

0.25

0.20 = .

0.15 N

% Successful

0.10 AN
0.05 N
0.00

Less than 30% More than 30%
Requirement Volatility

Mean

Agile software projects seem to be less

affected by large project size
(paper presented at XP 2018)

Interaction Plot for Client benefits
Data Means

3.50 -__ Development
T - method
— o o — :
R ’>_~___—~— —®— Agile A
PRI ~ — M- Partly agile
3.25 -7 ~ — -4 — Non-agile
S A
- = N
-___ N
e ~
S * g N
2 0
~
h
2.75
.
2.50
»
Small Medium Large

Budget Size Category

25/5/18

10

25/5/18

International Journal of Project Management [

Management

Volume 35, Issue 8, November 2017, Pages 1573-1586

Direct and indirect connections between type of contract
and software project outcome

Magne Jargensen & =, Parastoo Mohagheghi, Stein Grimstad

Show more

https://doi.org/10.1016/j.ijproman.2017.09.003 Get rights and content

Fixed price contracts

Stronger emphasis on low Lower Lower client Project scope changes Lower client/stakeholder
price inselection of emphasis on involvement in and scope flexibility involvement in project
provider provider skill management perceived more asa management

of resources risk

Higher risk of selection of Stronger focus on Less use of agile

a provider with price specification and less development with

based on over-optimistic on what gives the frequent deliveries to

effort estimate client more benefits production and flexible
scope

Higher risk of Less focuson benefit Less and late feedback
opportunistic provider management during from users and
behaviour, when making the project execution stakeholder

financial loss

Higher risk of quality or Higher risk of pro.wder Higher risk of client
. and developer skill N
productivity problems benefits problems
problems

Higher risk of project problems

11

25/5/18

Success pattern

I Time & material contracts

...........

———————

Stronger emphasis on
evaluation of skill, less
emphasis on low price, in
selection of provider

Stronger client involvement
in management
(monitoring, selection) of
resources

Project scope changes
and scope flexibility
perceivedas aan
opportunity

Stronger client and
stakeholder involvement
in project management

Less risk of opportunistic
behaviour of provider

/

Higher likelihood of good
quality and productivity

A

More use of agile
development with
frequent deliveries to
production and flexible

More focuson benefit
management during
the project execution

scope
v

N\

More, earlier and
better feedback from
users and other

stakeholder

Higher likelihood of

le—1 competent provider and

skilled developers

Higher likelihood of
delivering the expected
client benefits

Higher likelihood of project success

What | wanted to say ...

* The evidence (although not very strong) suggests that
autonomous teams are more successful.
— The causal connections may be complex
Agile is not agile, and especially «frequent deliveries to
production» (enabling feedback) and »flexible scope»
1s connected with more success.

— This is especially the case when there is a high requirement
volatility (which to some extent is caused by the feedback)

and when projects get larger.

It is when we analyse success and failure patterns, not
factors, that we get the most useful results and the best

insight.

12

QUESTIONS?

Download my newest book for free: tinyurl.com/timepredictions

Time Predictions
Understanding and
Avoiding Unrealism
in Project Planning
and Everyday Life

Project
Manager

r T 1
TeamLead Team Lead
cumBA1l QATester cumBA2
r 1 r 1
Developer Developer Developer Developer
1 2 3 4

25/5/18

13

Analysis challenges:

Poorly defined concepts, e.g., what is agile and
what is an autonomous team?

Forcing dichotomies on continuous scales
Cause-effect vs correlation
Subjectivity in measurement

Little control of sample representativeness
(convenience samples, mainly from Norway)

Missing context information

25/5/18

14

26/11/18

W

Agile oftware
development and 1
benefits management: A "+

perfect match
Workshop 24. October 2018

L R e &

‘lﬁ

Blitan, University o@s

Based on:

» Jargensen, M. (2016). A survey on the characteristics of projects
with success in delivering client benefits. Information and Software
Technology, 78, 83-94.

» Jargensen, M., Mohagheghi, P., & Grimstad, S. (2017). Direct and
indirect connections between type of contract and software project
outcome. International Journal of Project Management, 35(8), 1573-
1586.

» Jargensen, M. (2017, May). Software development contracts: the
impact of the provider's risk of financial loss on project success.
In Proceedings of the 10th International Workshop on Cooperative
and Human Aspects of Software Engineering (pp. 30-35). IEEE
Press.

* Do Agile Methods Work for Large Software Projects? (2018, April)
To be presented at XP 2018, Porto, Portugal.

* Huge investments in digitalization. What does it give us in return?
Keynote Software 2018 (DnD’s annual conference, Oslo, Norway).

What are key characteristics of software projects
(digitalization projects)?

* Exposed to a fast-changing world (technology, needs,
opportunities)

* Producing innovations (never constructing the same
twice)

» Transformation projects (change of work processes)

* Enables agility (such as scope flexibility, less upfront
planning and specification work, frequent deliveries, late
changes)

» Continuous development (the organization of software
development work as a project is by more and more
software professionals believed to problematic.)

What is benefits management in
software development?

* A set of processes, optimally including:
— Identify and estimate benefits (and costs)
— Develop a plan for when and how to realize benefits
— Allocate responsible for the realization of the benefits

— Continuous delivery, prioritization and management
of benefits during the project execution

— Evaluation of realized benefits

* Large variation in how (and if) these steps are
implemented

26/11/18

What does it mean to succeed
and to fail with software
development?

Software project success

Scope Value -
(Features, (Releasable Features, Usability)

Functionality) (aka Extrinsic quality)

Quality
Resources Schedule p—
Cost, Budget| Ti spects :
(Cost, Budget) {Time} (Reliable, Adaptable Product) Constraints
(aka Intrinsic quality) (Scope, Effort, Schedule)

Success is a combination of, amongst others:
» Client benefits delivered

» Cost control

+ Time control

+ Development efficiency

» Software properties (technical quality)

* Learning

26/11/18

Our studies on benefits management:

 Nine surveys, with 50-200 participants each,
representing around 1000 Norwegian software
projects in the public and the private sector.

* In-depth, interview-based examination (case

studies) of 35 software projects in the public
sector of Norway

» Ongoing studies in two large organization on
benefits management in large scale agile

Success and failure rates
found in our studies

All studies give similar results:

» Around 50-60% successful projects
» Around 30-40% problematic (but not
failed) projects

» Around 10% failed projects

26/11/18

How is agile and benefits
management connected?

It helps to work agile, but ...

Agile Frequent delivery Flexible scope
to production
Client benefits 16% 22% 29%
Technical quality 21% 6% 32%
Budget control 2% 22% 29%
Time control 8% 1% 24%
Efficiency 1% 5% 24%

... only when including frequent delivery to production and flexible
scope.

Agile projects not including these two practices were LESS successful
than non-agile projects! These two practices are strongly connected to
benefits management.

Similar results in our follow-up surveys and studies

26/11/18

Benefits management helps, especially
during the project execution ...

Survey 1:

Benefit management practices Proportion | Increase in success rate (wrt benefits)
Cost-benefit analysis (up front) 47% 6%

Benefit responsible appointed 57% 22%

Plan for benefit management 33% 31%

Benefit management during proj. execution 53% 34%

Evaluation of benefit during/after proj. exec. 31% 19%

Survey 2 (in-depth study):

Benefit management practices Present Not present/don’t know
Cost-benefit analysis (up front) 31% with problems 22% with problems
Benefit responsible appointed 28% with problemer 29% with problems
Plan for benefit management 29% with problems 28% with problems
Benefit management during proj. execution 20% with problems 35% with problems

Successful benefits management in a
changing world requires agile development

Requirement volatility, frequency of delivery and success for agile projects

Delivery Frequency
0.30 -

- —e— Four or less per year
s _ = - More than four per year
0.25 e
020 w
3 AN
& AN
S 015 N
3 AN
R AN
0.10 o
AN
\\\
0.05 AN
\\
N
0.00 e
Less than 30% More than 30%

Requirement Volatility

26/11/18

Mean

Agile software projects with benefits management
practices during project execution seem to be less

3.50

3.25

3.00

2.75

2.50

affected by large project size

Interaction Plot for Client benefits

Data Means

*_ —
— - 1
— - —
e JEE
- ~
L LE S b
e e N s
. N
~
h |
S
Small Medium Large

Budget Size Category

Development
method
—&— Agile
—B— Partly agile
— -4 — Non-agile

Time & material type of contracts much

better for both the client and the
provider. Why is that?

First study: Extremely negative results for Fixed price contracts.

Fixed price Time & Material
Client benefits 0% (success rate) | 59%
Technical quality 22% 24%
Budget control 33% 31%
Time control 11% 29%
Efficiency 0% 19%

26/11/18

I Fixed price contracts

Failure pattern: Interaction between contract, agile and benefits management

Stronger emphasis on I Lower Lower client Project scope Lower
low price in selection of ! | emphasis involvement changes and scope client/stakeholder
provider on provider in flexibility perceived involvement in project
skill management more as a risk management
of resources

Higher risk of selection
of a provider with price
based on over-
optimistic effort
estimate

Higher risk of
opportunistic provider
behaviour, when
making financial loss

Higher risk of quality or
productivity problems

Higher risk of provider
and developer skill

problems

Stronger focus on
specification and less
on what gives the
client more benefits

Less use of agile
development with
frequent deliveries to
production and flexible
scope

Less focus on benefit
management during
the project execution

Less and late
feedback from users

and stakeholder

Higher risk of client
benefits problems

Higher risk of project problems

I Time & material contracts I

Success pattern: Interaction between contract, agile and benefits management ...

Stronger emphasis on
evaluation of skill, less
emphasis on low price,
in selection of provider

Stronger client
involvement in
management (monitoring,

selection) of resources

Project scope
changes and scope
flexibility perceived

as a an opportunity

Stronger client and
stakeholder
involvement in project
management

Less risk of
opportunistic behaviour
of provider

More use of agile
development with
frequent deliveries to
production and flexible

scope

More focus on benefit
management during

the project execution

More, earlier and
better feedback from
users and other
stakeholder

Higher likelihood of
good quality and
productivity

Higher likelihood of
competent provider
and skilled developers

Higher likelihood of
delivering the expected
client benefits

Higher likelihood of project success

26/11/18

Conclusions

There are success and failure patterns, not
isolated success and failure factors

Agile development, with its frequent deliveries
and flexibility in scope, enables good benefits
management during project execution

Other factors, especially choice of contract,
supports or limits the ability to implement good
benefits management practices in agile
development.

It is essential that the client is strongly involved
in the planning and execution of benefits
management

26/11/18

@kes software
successful?,

Fapidy b
BN f

p e

e Jorgensen

' : . oW
Lklflplyersny of‘ 31078 Sim gM;etrqpolﬁn,A%I}JE

Wlfe o 4 —al

26/11/18

Based on:

« Jargensen, M. (2016). A survey on the characteristics of projects
with success in delivering client benefits. Information and Software
Technology, 78, 83-94.

« Jargensen, M., Mohagheghi, P., & Grimstad, S. (2017). Direct and
indirect connections between type of contract and software project
outcome. International Journal of Project Management, 35(8), 1573-
1586.

« Jargensen, M. (2017, May). Software development contracts: the
impact of the provider's risk of financial loss on project success.
In Proceedings of the 10th International Workshop on Cooperative
and Human Aspects of Software Engineering (pp. 30-35). IEEE
Press.

* Do Agile Methods Work for Large Software Projects? (2018, April)
To be presented at XP 2018, Porto, Portugal.

» Huge investements in digitalization. What does it give us in return?
Keynote Software 2018 (DnD’s annual conference, Oslo, Norway).

How successful are |IT
investments?

26/11/18

26/11/18

ou can see the computer age everywhere but in the productivity
statistics.

Robert Solow (1987)

This "productivity paradox” is
claimed even today. Is it true?

Information Economics and Policy a
Sonipid /
& sl Volume 25, Issue 3, September 2013, Pages 109-125

ICT and productivity: conclusions from the empirical literature

M. Cardona @&, T. Kretschmer @ ® & &, T. Strobel b=

https://doi.org/10.1016/j.infoecopol.2012.12.002 Get rights and content

“... 10% increase in ICT investment leads to a
0.6% increase in growth” (i.e., around half of the
current (very low) increase in productivity is due to
ICT-investments!)

”... the growth impact of ICT has grown over time.”

prec
100 150 200

50

A high number of studies (and researcher bias ...)

Information Economics and Policy

Volume 38, March 2017, Pages 38-54

The productivity paradox: A meta-analysis

Petr Polak =

8 |
£8
-4 6 -a 2 4
Figure 5: Funnel graph - before 2002 Figure 6: Funnel graph - after 2002

BUT ...

26/11/18

There are much wasted and failed ICT
investments ...

Around 10% of all IT projects are cancelled or completed
with little or no client benefits.

About 50% get into substantial problems with either client
benefits, technical quality, cost control, time control or
development productivity.

Why don’t we know how to avoid
failures and be successful with
software development?

26/11/18

There are
thousands of
reports, research
papers and
presentations on
how to succeed
with software
development
projects

Successful Software Project Delivery in 10 Steps | Appnovation

https://ww com/. fty project-deli... ¥ Oversett denne siden

15. des. 2014 - So spend some time here to not only identify and document what the change is, but also
identify how to refocus the team and their efforts to

How to Manage a Successful Software Project: Methodologies ...
https://iwww.amazon.conV...Successful-Software-Project.../04710... ¥ Oversett denne siden
Buy How to Manage a Successful Software Project: Methodologies, Techniques, Tools on
Amazon.com ¥ FREE SHIPPING on qualified orders.

Empathy: The key to a successful software project - O'Reilly Media
https://www.oreilly.com/.../e thy-the-key-t ft... ¥ Oversett denne siden
22.jun. 2016 - Empathy: The key to a successful software project ... But it is not enough to safeguard
the success of even relatively simple software Leam how to pass data to a command without
violating the command pattern in C#. Video.

Communities Over Code: How to Build a Successful Software Project ...
hitps://www.linux.com/ de-how-build-suc... ~ Oversett denne siden

9. jan. 2017 - Healthy productive FOSS projects don't just happen, but are built, and the secret
ingredient is Community over code. Purpose and details are ..

How to Ensure your Software Project is a Success

https://www.castle-cs.com/.. /now-to-ensure-your-software-projec... v Oversett denne siden
How to Ensure your Software Project is a Success. Thursday 9th April 2015. In the first of a series of
posts on software project management, George Strathie,

Software Project Success - InfoWorld

www.infoworld. -project- ~ Oversett denne siden

23. apr. 2015 - When outsourcing a software project, companies will often negotiate a fixed-bid
contract with .. Here's how to get started in the right direction.

How to Be a Successful Software Project Manager
https:/books.google.no/books?isbn=1482848392 - Oversett denne siden

Dr. Tuhin Chattopadhyay - 2015 - Business & Economics

The success of the project largely depends upon the satisfaction of the users and ... Lot of effort goes
into making a software project successful; right from

review - How to measure the success of a small software project ...

com/.../now-tt the-s... v Oversett denne siden
6. mar. 2014 - Our team is putting together a quick review process for measuring the success of a
software project. Projects are mostly internal, which means

Reliable Software Project Success [GreyLoud Guide to Software ...
iokad s o iact Ouacatia

i

Example list of success factors

SUCCESS CRITERIA

IMPORTANCE (POINTS)

. User Involvement

19

. Executive Management Support

16

. Clear Requirements

15

. Proper Planning

11

. Realistic Expectations

10

. Short Project Milestones

. Competent Staff

. Ownership

OO [N[O[O[R[O N[

. Clear Vision & Objectives

10. Hard-Working, Focused Staff

TOTAL

O |W|(W|o| 00|

The list of success factors has not changed much since the 1960s!
More or less the same list is for example presented in:

Gotterer, M.H. Management of computer programmers. Proceedings of
the spring joint computer conference. 1969. ACM

26/11/18

26/11/18

Many methods claiming success

Cobb’s paradox?

We know why projects fail, we know how to prevent their
failure — so why do they still fail?

What is a proper response to Cobb’s paradox? Do
software professionals ignore the knowledge?

Cobb’s paradox is no paradox. We don’t know much
about why something fails and how to succeed.

Even worse. The truth is that ...

* The high complexity and
innovativeness of product, process and
people organization means that we can
hardly expect to succeed all the time

* Much of what happens is outside of the
control of the project

» Connections are context dependent
and hard to identify and understand

* There is a network of connections and
we’re inherently poor at identifying and
understanding indirect relationships

* The relationships are probabilistic and
we’re inherently poor at understand
non-deterministic relationships

... we’'ll probably

never

understand fully

what it takes to
succeed

A diversion into probabilistic
relationships

Just to illustrate how poor we are
at identifying them

26/11/18

Representativeness bias

(seeing patterns that are not there)

Question: Assume five throws with a fair coin. Which of the following
sequences is more likely to occur?

Alt. 1: Head-Head-Head-Head

Alt. 2: Head-Tail-Head-Talil

Answer: Same probability
Relevance: We tend to use to the representative heuristic (Alt 2. is more

“representative” of sequence of coin flipping) and think that non-
representative sequence (such as Alt. 1) are surprising patterns.

Failure of seeing true patterns

Question: Assume a sequence of throws with a fair coin. Which of the
following two sequences is more likely to occur FIRST?

Alt. 1: Head-Head

Alt. 2: Tail-Head

Example: Head-Tail-Tail-Head-Head....

-> Tail-Head occurs before Head-Head

Answer: It is 75% likely to first observe Tail-Head and only 25% likely to
first observe Head-Head

Relevance: Some probabilistic connections are connected, hidden and
non-intuitive. Difficult to see them ...

26/11/18

One more... (mainly for fun, but also to show
how poor our probabilistic intuition is)

* A country has regulated that no family is allowed to have more than
one son, but as many daughters as they want.

» This means that allowed sequences of child-births are:
— Boy (stop, not allowed to have more children)
— Girl-Boy (stop)
— Girl-Girl-Boy (stop)
— efc.

* Question: How does this law affect the proportion of men and
women in the country?

« Answer: Not effect at all. There will still be about 50-50 men and
women

Back to software projects ...

What does it mean to succeed
and to fail with software
development?

26/11/18

10

Software project success

Scope (Releasabl \F/altje Usability)
eleasable Features, Usabili
(Features, (aka Extrinsic quality)

Functionality)
Quality :
Resources Schedule o
t, Budget Ti spects ;
L (Fime) (Reliable, Adaptable Product) Constraints
(aka Intrinsic quality) (Scope, Effort, Schedule)

We defined success as a combination of a set of criteria, subjectively judged
by the client and project manager:

+ Client benefits delivered

+ Cost control

+ Time control

+ Development efficiency

+ Software properties (technical quality)

Our definition of success and failure of
software project

Scale (values for each success criterion):
* Very successful

* Successful

* Acceptable

* Problematic

* Very problematic

Project outcome (for the project as whole):

» Successful: Acceptable or better on all five criteria (benefits, cost, time,
quality, efficiency)

* Problematic: Problematic or worse on at least one criteria
* Failure: Cancelled, or delivering no or very little client benefits

26/11/18

11

Our studies (2015-2017):

 Nine surveys, with 50-200 participants each,
representing around 1000 Norwegian software
projects in the public and the private sector.

* In-depth, interview-based examination (case
studies) of 35 software projects in the public
sector of Norway

 Analysis of a data set consisting of more than
400.000 small, international IT-projects/tasks

Success and failure rates
found in our studies

All studies gave similar results:

» Around 50-60% successful projects
» Around 30-40% problematic (but not
failed) projects

» Around 10% failed projects

Like other studies, we have insufficient control of
the representativeness of the samples and with
definitions and measures of success. Other
contexts, measures and data collection methods,
may give other success and failure rates.

26/11/18

12

More interesting
(and more robust results):

How are things connected?

Question 1: Does the software
development method matter?
(Does it help to work agile?)

Common belief (amongst agile people): Yes

26/11/18

13

Our studies: Yes, agile helps, but ...

The numbers show the increase (in percent points) in proportion of
successful projects

Agile Frequent delivery Flexible scope
to production
Client benefits 16% 22% 29%
Technical quality 21% 6% 32%
Budget control 2% 22% 29%
Time control 8% 11% 24%
Efficiency 1% 5% 24%

... only when including frequent delivery to production and flexible scope.
Agile projects not including these practices were LESS successful than
non-agile projects!

Similar results in our follow-up surveys and studies

Agile is not agile (requirement change and
type of agile development)

Requirement volatility, frequency of delivery and success for agile projects

Delivery Frequency
0.30 - — e Four or less per year
-7 — -m— - More than four per year

025 e
0.20 "

0.15 AN

% Successful

0.10
0.05 AN
0.00

Less than 30% More than 30%
Requirement Volatility

26/11/18

14

26/11/18

Question 2: Are larger
(and presumably more
complex) projects
less successful?

Common belief: Yes

Our (initial) result: No
Large projects not less successful
than smaller ones (similar finding in all studies)

Criterion <1 mill Euro 1-10 mill Euro > 10 mill Euro
Client benefits 31% 47% 35%
Tech. quality 24% 28% 25%
Budget control 24% 47% 47%
Time control 29% 35% 35%
Efficiency 24% 12% 24%

The numbers (percentages) represent the proportion of projects
assessed to be successful or very successful with respect to a success criterion.

15

26/11/18

Adding non-completed projects in follow-up studies gave
that the largest projects (> 10 mill Euro) were strongly
over-represented in the group of failed projects (2-3 times

But, the first results hid that we only had
studied completed projects

more frequent).

A rule of thumb (based on offshoring projects) is that ten
times larger project size leads to twice the risk of failure.

Also of interest:

Different reasons for problems for small and large projects.

Higher risk of failure with larger projects should not be used to
divide "logical connected deliveries” into separate projects.

Mean

Agile software projects seem to be
less affected by large project size

3.50

3.25

3.00

2.75

2.50

Interaction Plot for Client benefits

Data Means

T TN ——
- .
- SRS
-~ ~
P N
S
-___ 2 X
=i ce \\
N B
~
h
*
Small Medium Large

Budget Size Category

Development
method
—&— Agile
—B— Partly agile
— <4 - Non-agile

16

Question 3: Does contract type
matter?

Common belief (amongst clients):
Fixed price contracts is the better (for us)

Our finding: Time & material type of
contracts much better for both the client
and the provider

First study: Extremely negative results for Fixed price contracts.

Fixed price Time & Material
Client benefits 0% (success rate) | 59%
Technical quality 22% 24%
Budget control 33% 31%
Time control 11% 29%
Efficiency 0% 19%

26/11/18

17

Failure pattern (Fixed price behaviour)

Fixed price contracts

Stronger emphasis on
low price in selection of
provider

Higher risk of selection
of a provider with price
based on over-
optimistic effort
estimate

Higher risk of
opportunistic provider
behaviour, when
making financial loss

Higher risk of quality or
productivity problems

Lower Lower client

emphasis involvement

on provider in

skill management
of resources

Project scope
changes and scope
flexibility perceived
more as a risk

Lower
client/stakeholder
involvement in project
management

Stronger focus on
specification and less
on what gives the
client more benefits

Less use of agile
development with
frequent deliveries to
production and flexible
scope

Less focus on benefit
management during
the project execution

Less and late
feedback from users
and stakeholder

problems

Higher risk of provider
and developer skill

Higher risk of client

benefits problems

Higher risk of project problems

Success pattern (Time and materials behavior)

I Time & material contracts I

Stronger emphasis on
evaluation of skill, less
emphasis on low price,
in selection of provider

management

Stronger client
involvement in

selection) of resources

(monitoring,

Project scope
changes and scope
flexibility perceived

as a an opportunity

Stronger client and
stakeholder
involvement in project
management

Less risk of
opportunistic behaviour
of provider

Higher likelihood of
good quality and
productivity

More use of agile
development with
frequent deliveries to
production and flexible

scope

More focus on benefit
management during
the project execution

More, earlier and
better feedback from
users and other
stakeholder

Higher likelihood of
competent provider
and skilled developers

Higher likelihood of
delivering the expected
client benefits

Higher likelihood of project success

26/11/18

18

Question 4: Does it help with
“benefits management”?

Common belief: Yes

Our finding: Not all benefit management
practices led to much improvements

Survey 1:

Benefit management practices

Proportion

Increase in success rate (wrt benefits)

Cost-benefit analysis (up front) 47% 6%
Benefit responsible appointed 57% 22%
Plan for benefit management 33% 31%
Benefit management during proj. execution 53% 34%
Evaluation of benefit during/after proj. exec. 31% 19%
Survey 2 (in-depth study):
Benefit management practices Present Not present/don’t know

Cost-benefit analysis (up front)

31% with problems

22% with problems

Benefit responsible appointed

28% with problemer 29% with problems

Plan for benefit management

29% with problems

28% with problems

Benefit management during proj. execution

20% with problems

35% with problems

26/11/18

19

Characteristics of the
successful project

Success pattern

Good control of ambition level. Avoiding "too much” at the
same time and good at saying "no” to adding complexity.

Use of contracts that avoid "fixed price”-behavior.

Client with competence to select and manage competent
providers and individual resources (not so much focus on low
price)

— Selection of resources from more than one provider
Flexibility in scope (not only "must have”-functionality)

Client is (as a minimum) strongly involved in the planning and
execution of benefits management.

Use of agile development with frequent deliveries to
production (or at least with proper testing/feedback from real
users)

Early start of involvement of stakeholders (especially the
users) and planning and preparing for deployment.

26/11/18

20

Extra material

Regional differences in failure rate

4 Table: Client = columns, Provider = rows

Client | AF EA EE LA ME NA ocC SA WE Total
Provider
AF 14% 22% 26% 19% 23% 16% 12% 26% 15% 17%
(Africa) (92) (289) (137) (105) (195) (3944) (692) (306) (183) (7633)
EA (East | 20% 16% 19% 15% 18% 12% 12% 25% 15% 14%
Asia) (332) | (1660) | (856) (662) (970) (27447) | (3953) | (1416) ' “1ne7er 1 (48023)
EE (East | 11% 14% 13% 11% 14% 9% 10% 18% 10% 10%
Europe) | (1285) | (5010) | (5278) | (2618) | (4325) | (114728) | (11473) | (4355) | (51088) (201565)
LA 12% 16% 14% 11% 15% 10% 9% 20% 12% 11%
(Latin (127) | (523) (540) (985) (493) (17245) | (1888) | (499) (6369) (28868)
America)
ME 16% 25% 16% 17% 17% 13% 13% 26% 15% 14%
(Middle | (231) | (622) (635) (320) (824) (15881) | (1973) | (792) (6494) (27883)
East)
NA 19% 20% 16% 20% 19% 13% 15% 25% 15% 14%
(North (2713) | (2713) | (2143) | (1352) | (2112) | (B6346) | (8B161) | (2049) | (23947) | (130919)
America)
ocC 14% 18% 26% 26% 19% 12% 9% 24% 15% 13%
(Oceania) | (58) (260) (149) (82) (182) (6656) (1474) 1 0y (2303) (11484)
SA 17% 23% 22% 19% 20% 16% 15% 24% 18% 17%
(South (2614) | (7729) | (4861) | (3599) | (5632) | (143699) | (18958 | (10934) (54710) | (254075)
Asia)
WE 13% 17% 14% 14% 15% 13% 14% 23% 13% 13%
(Western | (470) | (2070) | (1779) | (960) (1927) | (38544) | (4250) | (1529) | (20111) | (72297)
Europe)
Total 16% 19% 17% 16% 18% 13% 13% 23% 14%

(5734) | (20935) | (16393) | (10702) | (16714) | (456106) | (52894) | (22113) | (177852)

26/11/18

21

Failure factors from a study of 400.000 small projects

Predictor variable Coefficie p-value Odds 95% confidence interval
nt ratio Lower Upper

Constant -2.90 0.00

SatisfactionScoreProviderCat=Low 0.35 0.00 1.42 1.39 1.45
SatisfactionScoreProviderCat=No Scores 091 0.00 2.49 2.33 2.67
FailureRateProviderCat=Low -0.66 0.00 0.52 0.51 0.53
FailRateProviderCat=No Projects -0.34 0.00 0.71 0.67 0.76
SkillTestPassRateProviderCat=Low 0.07 0.00 1.07 1.02 1.12
SkillTestPassRateProviderCat=No Tests 0.58 0.00 1.79 1.74 1.85
SatisfactionScoreClientCat=Low 0.18 0.00 1.20 1.17 1.23
SatisfactionScoreClientCat=No Scores 0.25 0.00 1.28 1.23 133
FailureRateClientCat=Low -0.64 0.00 0.53 0.52 0.54
FailureRateClientCat=No Projects -0.63 0.00 0.53 0.51 0.56
PreviousCollaboration=Yes -1.74 0.00 0.17 0.17 0.18
FocusLowPriceCat=Low -0.19 0.00 0.83 0.81 0.85
FocusLowPriceCat=Medium -0.08 0.00 0.92 0.89 0.95
FailureRateProviderRegionCat=High 0.27 0.00 1.31 1.28 1.33
FailureRateClientRegionCat=High 0.42 0.00 1.53 1.48 1.58
GeographicalDistance=Neighbor -0.07 0.02 0.93 0.90 0.97
GeographicalDistance=Offshore 0.02 0.10 1.02 1.00 1.05
logProjectSize 0.71 0.00 2.03 1.99 2.06

Jorgensen, Magne. "Failure factors of small software projects at a global
outsourcing marketplace." Journal of systems and software 92 (2014): 157-169.

26/11/18

22

Milliardinvesteringer i

digitalisering. Hv e

PRODUKTIVITETSVEKST
giennom digitalisering (og annen
teknologi) er trolig det som — om noe — vil
kunne redde velstanden til en aldrende
befolkning (nedgang i andel i lgnnet
arbeid), som jobber faerre timer, med
hgyere lgnn, og som investerer mindre i
forskning og utvikling enn de fleste
andre industriland.

17.02.2018

17.02.2018

5 LI RUEER
Velstandsland = Lykkeland? CY Wl
. .
. c 2o
. . t 2 d
«World happiness report» PNt
c et
* e STtpe |,
o Cee, E o
° ° ® o .
% et 7, .
Rt I
¢
. . . 4 °
Figure 2.2: Ranking of Happiness 2014-2016 (Part 1) “ ° .
6 10
Igdpcppp
1. Norway (7.537) I B —— _— H
2. Denmark (7.522) I ST - =l
3. Iceland (7.504) —— —— - =
4. Switzerland (7.494) — ISR E
5. Finland (7.469) —— S B
6. Netherlands (7.377) —— T - B
7. Canada (7.316) —— I — - =
8. New Zealand (7.314) I T — - B
9. Australia (7.284) — L e B
10. Sweden (7.284) — —— - B
B Explained by: GDP per capita Explained by: generosity
Explained by: social support mm Explained by: perceptions of corruption
mm Explained by: healthy life expectancy Dystopia (1.85) + residual

mm Explained by: freedom to make life choices H 95% confidence interval

MEN, da ma digitaliseringen faktisk

fore til gkt produktivitet.

Gjgr den det?

Hvor myeinvesteres?
Hvor myefar viigjen?
Har dette forholdet endret seg over tid?

17.02.2018

VI INVESTERER TROLIG STADIG MERI|
DIGITALISERING

(VANSKELIG A FINNE GODE TALL ...)

Antall ansatte i IKT-sektoren gker med
ca. 2% i aret (mer enn snitteti EU)

Figure 15: Mean annual growth rate of ICT sector and total employment in the European Union and
other non-EU economies (2006-2014)

India China Brazil Australia Switzer- jorway @l Taiwan Canada United Korea Russia Japan
land States

ICT sector mmmmm Total employment ® ICT Manufacturing O ICT Services emmm=|CT sector in EU

Source: 2017 PREDICT Dataset, elaborated by JRC-Dir. B and Ivie. See methodological notes.

17.02.2018

NORGE BLIR STADIG MER DIGITALISERT,
OG VIGJPR DETTE RASKERE OG MER

EFFEKTIVT ENN DE FLESTE ANDRE LAND

God produktivitet per arbeidstime

(ikke sa god per ansatt)

Norge

Figure 20: ICT sector productivity per hour worked in the European Union and other non-EU
economies (current EUR PPS per hour worked, 2014)

*© Figure 18: ICT sector pfoductivity per person employed in the European Union and other non-EU
& conomies (thousand EUR PPS per person, 2014)
o
&
50
w
0
6.1

2 100
10 o !
0 &

unted | Novay | Tawan Swtitand Casta Kores Auswals g Ganl | Rasa Chea inda

stter o

2018 ——cU2014

Sttes

Unted Towan Korea [Norway fowiterand Conada Awtaln Japan Braxl Rusie Chia Inda
Note: 2013 for Canada.

Source: 2017 PREDICT Dataset, elaborated by JRC-Dir. B and Ivie. See methodological notes. o1 vzt

Note: 2013 for Canada.
Source: 2017 PREDICT Dataset, elaborated by JRC-Dir. B and Ivie. See methodological notes.

Digital Economy and Society Index

2017 .‘ , Vi gjor det godt pa
alle (?) rangeringer

av digitalisering
----- %% (her EUs DESI rangering)

Digital Economy and Society Index (DESI) 2017 ranking

.80
5 Digital Public Services m 4 Integration of Digital Technology 3 Use of Internet ® 2 Human Capital m 1 Connectivity

.70 .
Norge
50 I I I I I I i
“ I|||I||||I
.30 I I I | | 1
THHHH
.10
.00 e N S B e e S e e S e e e LI S e e e e S S e e

DK& FI SE NL LU BE UK IE EE AT DE MT LT ES PT EU FR SI CZ LV SK HU CY PL HR IT EL BG RO

Using a digitization index to measure the Og vi har blitt

economic and social impact of digital stadig bedre
agendas (i hvertfall pa
Raul Katz, ;telis Koutroump\s;d-:ema; Martin Callorda n Oe n i n d e kse r)

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Japan =@ Singapore =@ S.Korea == Australia =% US

-~ UK -#~ Germany =@ Norway = Sweden

Source: Compiled by the authors

17.02.2018

17.02.2018

DERSOM @KT DIGITALISERING GIR @KT
PRODUKTIVITET, SA SKULLE VI FORVENTE
EN @KT PRODUKTIVITETSVEKST DE
SENERE ARENE

MEN, VI SER DET MOTSATTE.
PRODUKTIVITETSVEKSTEN HAR GATT NED

17.02.2018

NO' l Norges offentlige utredninger 2015:1

Produktivitet — grunnlag
for vekst og velferd

Produktivitetskommisjonens ferste rapport
«Produktivitetsveksten i Norge har etter 1970 veert
sterkere enn i de fleste andre land. Produktivitetsvekst
har veert den viktigste forklaringen pa den sterke
velstandsveksten Norge har hatt i denne perioden.
Produktivitetsveksten har falt etter 2005. Dette er
bekymringsfullt dersom det er et uttrykk for et
langsiktig fenomen, og ikke bare et utslag av
midlertidige forstyrrelser.»

Fra arstalen til sentralbanksjef Olsen

Figur 8 Produktivitetsvekst i Norge.
BNP per timeverk uten olje.‘) Faste priser. Arsvekst. Prosent

Kapitalbidrag
Utdanningsbidrag®
I Total faktorproduktivitet (TFP)

1950-59 1960-69 1970-79 1980-89 1990-99 2000-09 2010-15 2016-30

1) Anslag 2016 - 2030.
2) Beregningen er basert p& metode fra Hall, R. og C. Jones (1998) «Why do some countries produce
so much more output per worker than others». NBER Working Paper 6564. Marginalavkastning av
utdanning er satt til seks prosent.

Kilder: Statistisk sentralbyra og Norges Bank

17.02.2018

Det undersgkelser typiskviser

* Digitaliseringsandelen av
produktivitetsveksten var fgrst hgy (1990-
tallet), ble sa lavere (2000-tallet), for i det
senere a ha veert hgyere (typisk 30-50%!).
Enkel sagt: Digitalisering forarsaker en stor
andel av produktivitetsveksten, men veksten
blir bare lavere og lavere — selv om vi
investerer mer og mer.

DETTE KALLES OFTE
«PRODUKTIVITETSPARADOKSET»
FORST FRAMSATT AV SOLOW | 1987-
OG DISKUTERES FORTSATT HEFTIG

17.02.2018

Litt om metodikken (Solow-modellen):

InY(t)=InB(t) + aln K(t) + (1 —) In L(t)

Y er produksjonen, B er "total faktorproduktivitet”, K
er kapitalinnsats (som kan deles opp i investeringer i
digitalisering og annet), L er arbeid.

Bruk av modellen (regresjonsanalyse) gir typisk aten
10% gkning i digitaliseringskapital gir ca. 0.6%
produktivitetsvekst (Y/L = arbeidsproduktivitet).

Problemer

Kun direkte effekter og ingen interaksjonseffekter.
Antar at modellen er riktig spesifisert og at
regresjonsantagelser ikke brytes.

Tar ikke med gkt kvalitet (verdi = pris)

Far ikke med produktivitetsvekst der verdiskapning
ikke kan «prises», som digitalisering av offentlig

sektor, gratis spketjenester, selvbetjening,
delingspkonomi og spill-over effekter.

Tar ikke med forsinkede effekter

... 0g sa har vi forskerproblemer (publikasjonsskjevhet)

: Information Economics and Policy
3 ,’L,."‘g._ Volume 38, March 2017, Pages 38-54

The productivity paradox: A meta-analysis

Petr Polak =

200
L
200
L

1
"W,
150

prec
100
prec
100

-4 -2 6 2 4 B -4 2 [2 4 1)

Figure 5: Funnel graph - before 2002 Figure 6: Funnel graph - after 2002

Trolig vesentlige spill-over effekter

Oxford Bulletin
of Economics
and Statistics Published on behalf of the University of Oxford's Department of Economics
Explore this journal >

Original Article

Knowledge Spillovers, ICT and Productivity Growth'|

Carol Corrado, Jonathan Haskel, Cecilia Jona-Lasinio

First published: 24 March 2017 Full publication history

“We find that (a) the marginal impact of ICT capital is
higher when it is complemented with intangible capita

III
.

“Intangible capital” er f eks sgketjenester, gratis
programvare, kompetansegkning og merkevarebygging.

17.02.2018

10

17.02.2018

Hvor stor del av investeringene kan i det hele
tatt gi oss produktivitetsvekst?

Information Systems Evolution Efficiency
— Differences between the Public and the
Private sector

John KROGSTIE, Tor Kristian VELD
IDI, NTNU, Troi

Totalt sett brukes ca en tredjedel (34%) til utvikling av ny
funksjonalitet (nye systemer eller ny funksjonalitet i
eksisterende)
— Og da er det ikkeinkludert det meste av investeringer i
kompetanse, omstilling, utredninger, m.m.
— Offentlig sektor med lavere andel enn privat sektor (30% vs.
40%).
17% brukes til utvikling av nye systemer, 41% til forvaltning,
0g 42% til brukerstgtte og drift. Stabilt siden minst 1993.

Hvor stor del er "disruptiv” digitalisering? Vanskelig a si, men
troligen forsvinnende liten andel.

Noe investering gir reelt sett produktivitetsnedgang ...

IKT-FIASKO I DET OFFENTLIGE:
Halvparten av alle norske IKT-

prosjekter havner i problemer
€ e 2

Ca. 10% av alle IKT-
prosjekter blir enten
stoppet eller leverer svaert
lite kundenytte.

Ca. 50% far vesentlige
problemer enten med
nytte, kvalitet,
kostnadskontroll,
tidskontroll eller
produktivitet

Store prosjekter har sterre risiko for & mislykkes enn sma prosjekter.

www.hitledelse.com

11

17.02.2018

Gjor digitalisering oss mer lykkelige?
(annet enn gjennom velstandsgkning)

Norwegian Institute
INURN of International
Affairs

ICT, growth and happiness

Per Botolf Maurseth

Internet use and well-being: A survey and a theoretical framework

Det meste av empiri tyder pa at digitalisering
(stort sett) har positive effekt pa forngydhet

* Unngar kjedelig arbeid som a fylle ut
selvangivelse, mer spennende bruk av fritid,
stgrre sosiale nettverk, lettere tilgang pa
informasjon, ...

Bekymringer: Jobb-trygghet, personvern,
overforbruk/avhengighet, isolasjon, ...

Effekt avhenger av: Kompetanse, utdannelse,
helse, kultur, politikk, ...

12

17.02.2018

Table 6
Random effects
Variabl Helliwell et ~ With
Lykke'mOde“en e ale(\)Nleé ¢ inlernet
. Ln(GDP per 0.494 0.385
(regresjonsanalyse, nok en 1) 0.056 (0.064)***
o Sosial support 1.530 1.392
gang) tyder pa at gkt 220" (0.239)*
. . . Health 0.011 0.012
internettbruk gir et lite 0007) (0.008)
. . . Freedom 0.963 0.793
direkte bidrag til gkt lykke. (0160 (0.179)*
Generosity 0.562 0.478
(0.141)*** (0.157)***
. . Perc. of corr. -0.656 -0.675
1%-poeng gkning i antall 0.159* _ (0.169)**
. . Internetusers 0.006
internettbrukere gir et (0-00)
gTemployment -0.019
2 (0.005)***
UtSIag pa 0'006 Year fixed Yes Yes
2 H ffect
pa landets lykkesnitt o Em s
countries
N 1108 890
R2 0.74 0.76
R2 (within) 0.16 0.17
R2 (between) 0.79 0.80

Digitalisering Ignner seg - noen mysterier bestar

* Vitrenger digitaliseringsom gir produktivitetsvekst for
a beholde var velstand.
Velstaende land = lykkelige land. Digitalisering ser ut til
a gjore oss litt lykkeligere.

Godt dokumentert at en stor (kanskje gkende) andelav
en stadig lavere produktivitetsvekst skyldes gkte

investeringeridigitalisering.

Problematisk, men mulig, & forsvare mer digitalisering i
en tid der produktivitetsveksten har gatt ned, mens
digitaliserings-investeringene har gattopp.

Alt kansnus fra litt dystre til sveert lovende utsikter
med én stor innovasjon. Kunstig intelligens?

13

17.02.2018

SP@ORSMAL?

14

| v The worldis prob’amw\

X
9” S

&' éand"S'kewed _ .‘E

B\ =
| = 3

v%!Ignorance use, misuse, 4
mlsunderstandmgs and how to
; improve cost and benefits
| uncertainty-analyses in software
development pmJects

Magne J¢rgensen

Simula-Research
® Laboratory/OsleMet

*

26/11/18

Does the software industry know and
communicate what they mean with
an effort estimate?

(Do you know what an estimate is?)

26/11/18

An estimate is an estimate is an estimate?

Distribution of possible effort outcomes
Probability

w l
b J .
0t T r T T r

L.

70-90 90-110 110-130 130-150 150-170 170-190
Most optimistic Most likely Median effort Budgeted effort
effort effort (50% likely not (85% likely not

to exceed) to exceed)

>190

Most
pessimistic

effort

Estimate =

Best case?

Most likely?

Median?

With contingency added?
Something else?

A proper communication of
what we mean with an
estimate requires a
probabilistic understanding!

It’s fine to give a single point
estimate, as long as we tell
where at the distribution we
are, e.g., that we
communicate a most likely
or p50-estimate (median
estimate).

A survey among software professionals

“You have just estimated the number of work-hours you think you need to develop and
test four different software systems. Please select the description below that you think
is closest to what you meant by your effort estimate in the previous four estimation

tasks:

* Number of work-hours | will use given that | experience no or almost no major

problems. [Ideal effort]

* Number of work-hours | most likely will use. [Most likely effort]

* Number o[f work-hours where it is about just as likely that | will use more as it is that
ess

I will use

effort than estimated. [Median effort/p50]

* Number of work-hours where it is unlikely that | will use more effort than estimated.

[Risk averse effort/budgeted effort/...]

* Number of work-hours based on my expert judgment/feeling of how many work-
hours | will use. | find it difficult to decide about the exact meaning of the estimate.

[Don’t know/gut feeling]

* None of the above descriptions is close to what | typically mean by an effort estimate.

26/11/18

Results (replicated in other surveys)

Interpretation Frequency of interpretation

(as claimed in hindsight)

Ideal effort 37%
Most likely effort 27%
Median effort (p50) 5%
Risk averse effort 9%
Don’t know/gut feeling/other 22%

Similar problems (probably worse)
with estimates of benefits ...

| analysed more than 100 cost-benefit plans of Norwegian IT projects. None were
explicit about what they meant with their estimated benefits or estimated profit.

26/11/18

Sometimes software companies

try to include uncertainty in their
estimates.

Some provide and add uncertainty as shown below
Exercise: Find (at least) five problems

effort effort minimum, estimate (most likely?) and maximum
(best case, (worst case, 2. Too symmetric intervals. The outcome

distribution is typically right-skewed.

3. Too narrow intervals. Strong tendency towards
too narrow effort intervals to reflect, for example,

optimistic) pessimistic)

Activity A 15 work- 20 work- 25 work- a 90% confidence inerval.
hours hours hours 4. Incotl;rectfatljditcii(an(sj. It i§£ ?Rly thetn?_ﬁaln vtar!ues that
i g g g can be safely added, not the most likely, the
Activity B | 40 work 60 work S0 s minimum or the maximum effort. Adding most
hours hours hours Ii.kehly ekstimagces Ielzéd?go ubnderfe_stim%ti%n ina)
- right-skewed world. (For benefits, which may be
Activity € 45work- 50work- 55 work- Ie%t—skewed (?), this may lead to over-estimation.)
hours hours hours

5. No dependencies. Most projects have o
SUM effort 100 work- 130 work- 160 work- dependencies between activities, e.g., testing is
E eI TS 40% of development. Not including this, leads to
even more underestimation.

26/11/18

A brief side-track on adding
estimates in a right-skewed world

Assume project X

* Ten user stories, where all have the same (right-skewed) effort outcome
distribution

* Minimum (p10): 5 hour
* Most likely: 10 hours
* Maximum (p90): 22.5 hours

* Add-on activities (dependencies): 5 activities calculated as proportions of the
sum of the ten user stories (administration, system test,). All of them have the
same right-skewed effort outcome distribution

* Minimum (p10): 15% of the effort on the user stories
* Most likely: 20% of the effort on the user stories
* Maximum (p90): 35% of the effort on the user stories

26/11/18

The effort distributions
(log-normal, right-skewed)

A user story An add-on activity

5.0 22.5 0.1500 0.3475
10.0%

«lgnorant» adding of activities

* SUM User stories
* 10 x most likely (10 hours) = 100 hours

* SUM Add-on activities
* 5x0.2 x SUM User stories = 100 hours

e SUM TOTAL
* 100 tv + 100 tv = 200 hours

e Gives a STRONG underestimation!

* Very unlikely to use 200 hours or less!

The sum of the most likely effort is NOT the most likely sum

26/11/18

Sum of the effort distributions

10.0% 10.0%

«lgnorant»
estimate,
200 hours

P10 =215

Most likely = 246

P50 (median) = 250
Expected value (mean) = 251
P85 =282

P90 =290

450

100
150
200
250
300
350
400

Still not optimal, not right-skewed.
Central limit theorem + no dependencies = symmetric

Sum of effort distributions with dependencies (add-on dep.)

220 362

P10 =220 (up from 215)

Most likely = 265 (up from 246)
P50 (median) = 284 (up from 250)
Expected value (mean) = 288 (up from 251)
P85 =345 (up from 282)
P90 = 361 (up frok 290)

=3 = = = =
=] > 1= 1= P=
— ~ taal <)

Large increase in most likely estimates, nd it is right-skewed.
Median estimate (50% likely) is 284 (vs. “ignorant” of 200 and “no
dependencies” of 250)

26/11/18

The most "advanced” companies do it with asymmetric and wider
intervals, and the use of the “PERT”-formula. Still problematic?

Minimum effort Most likely (ML) | Maximum effort Mean effort Variance of effort
(p10) effort (p90) PERT effort = PERT variance =
(Min+4ML+Max)/6) (Max — Min)?/36
Activity A 15 work-hours 20 work-hours 40 work-hours 23 work-hours 17
Activity B 50 work-hours 60 work-hours 100 work-hours 65 work-hours 69
Activity C 45 work-hours 50 work-hours 150 work-hours 66 work-hours 306
Sum Expected value = 154 work-hours 392 (stdev = 20)
Uncertainty p85 (85% conf. not to exceed) equals ca. exp. value + stdev 154 + 20 = 174 wh

* The assumption of the PERT-formula is the unrealistic assumption that min=p0 and max=p100. Does not affect mean
effort much, but the variance get much too small. Should divide variance (assuming p10 as min and p90 as max) by
approx. 2.65%= 7.0 instead of 36! PERT gives much too narrow intervals.

* No support for knowing what a p10 and p90 estimate should be (No diff betwen 75%, 80%, 90% and 98% confidence
intervals.)

Experiment: Are software developers and managers able to give min-
max with X% confidence?

Group98%: How accurate do you think your effort estimate is?
I am 98% confident that I will use between (minimum) and

P o (maximum) work-hours.
* E?gf‘g:sl,gao?]tas I 56 OzftW are NB: A 98% confidence means that you think that the actual effort will be

within the minimum-maximum interval in about 98 out of 100 times in

developers (from similar situations.
Ukraine)
: Group80%: How accurate do you think your effort estimate is?

L]

ESt Lmated the same I am 80% confident that I will use between (minimum) and

ask. (maximum) work-hours.

¢ Asked for min-max NB: .An 80% .ccfnﬁdence means t.hat you thmk that the actual effort.will ‘t.)e

interva | s within the minimum-maximum interval in about 80 out of 100 times in

similar situations.

TABLE II: MINIMUM, MAXIMUM AND RWIDTH

Group Minimum effort ~ Maximum effort RWidth ?I\\:I/S(T IT/Iin)/Most ey
(median) (median) (median)

Group98% 110 work-hours 210 work-hours 0.44

Group80% 112 work-hours 176 work-hours 0.40

26/11/18

What to do? A long way to go ...

A simple approach leading to more realistic
effort uncertainty asessments

1. Estimate the most likely effort of the new project or task.

2. Idel?t)ify the "reference class” (similarly estimation complexity of projects or
tasks).

Recall the estimation error distribution of the reference class.

4. Use the estimation error distribution to find p10, p50 (plan), p80 (budget), p90
or whatever estimate you need.

e

Example:

* You estimate the most likely effort a new project to be 1000 work-hours and want
to find the p90-estimate (which will be your maximum effort).

* In the reference class of similar projects you find/know that 90% of the projects
had an effort overrun of 60% of less (= 10% had more than 60% overrun).

* Your p90-estimate should consequently be 1000 + 60% of 1000 = 1600 work-hours.

26/11/18

We have evaluated and
implemented this approach in
real-world contexts

Experiment

* Nineteen estimation teams of software professionals within one company.
* Estimation of the most likely effort of a project, which had just started.
* Estimation of the uncertainty in terms of 90%-confidence intervals (p5 and p95).

* Two groups:
* Group A: Uncertainty assessment “as usual”. Give 90% prediction intervals. No
support for minimum and maximum judgements.

* Group B: Create the error distribution of the reference class. Provide
minimum and maximum effort.

Results: The teams in Group B had much more realistic views of the real
uncertainty of the project. Especially for the minimum effort, understanding that
the world is right-skewed.

* Two replications in real-world contexts (controlled field experiments) confirm the
= results of improved realism using this method.

10

26/11/18

So what ...

* Poor communication of what is meant by effort and benefits estimates is
typical in software estimation contexts.

* Poor use of uncertainty assessment methods, if used at all, is even more
common.

* Too narrow and too symmetric effort intervals gives “garbage in — garbage
out” even when using proper uncertainty assessment methods.

* Looking back on previous estimation error is a “simple” and effective way of
getting realistic effort prediction intervals.

* This requires compentence and mindsets based on probabilities and
distributions.

* A long way to go before the IT industry are able to identify the real
uncertainty of software projects...

11

Experiences from the Finnish Telecom
Industry

Prof. Casper Lassenius
16.10.2018

FINNISH NIGHTMARES

FINNISHNIGHTMARES.BLOGSPOT.FI - FACEBOOK.COM/FINNISHNIGHTMARES - TWITTER.COM/FINN_MATTI

4

THE BUS IS "FULL™.

Casper Lassenius

Agenda

Large-Scale Agile

The cases

Scaling to many teams
Scaling the Product Owner

Dealing with Product Management
Infrastructure

Building the Agile Mindset

Large-Scale Agile

e Can mean many things
— Agile in large organizations

— Large efforts
* 5SS

* Long time
e Many people involved

— Here: >5 teams, 50 people in the same undertaking

* Basic planning and coordination mechanisms break down

Cases

Ericsson A

Ericsson B

Nokia A

Nokia b

F-Secure

Network
element

Service
Platform

Network
element

Network
software

Security
software

25-40

5-6

20

14

Casper Lassenius

250-400

100

300

200

150

11

Some Issues in Large-Scale Agile

Scaling to many teams

— Finding a balance between team alignment and
autonomy

* How much freedom can be given to teams, and what must be
common?

— Inter-team coordination

Sharing knowledge between roles that are now
scattered in teams rather than in their own function
— E.g. embedded architects

Scaling the Product Owner function

Dealing with the rest of the (non-agile) organization
Building the agile mindset

Marketing
& Sales

. 2
Large-Scale @
:

Customers

Product @@ @

Management @)
Q
Product @ Q Finances
Owners " Q
GG Ve e
R O g =S HR
S a,‘l‘geg*@
' 0. Yl N)
~ AL
C P

The Agile Team

Considerations:

- Cross-functional

- Self-organizing?

- What can a single team decide?

- What should be common with other teams?

- Synchronization points with other teams?
- Expertrolesin teams?

- E.g. architects
- Common model to start with
- Needs coaching

Marketing
& Sales

. 9
The Agile Tecis ¢
:

Customers

Management

Product @@%@@

e@
Product Q Q @@ Finances

Owners

Inter-team Coordination

Inter-team coordination:
Team responsibility —a huge mindset change
Possible structures
Scrum-of-Scrums (SoS)
Joint Release Planning / Pl planning
Communities of practice (CoP)

Common Demo & Retrospective

Literature: Scrum-of-Scrums (SoS

SOS meeting: . What did your team do since the
previous meeting that is relevant to

e 2-5/week
. some other team?
* 15-30 min)
What will your team do by the next
Scrum-of-Scrums meeting that is relevant to other

teams?

. What obstacles does your team have
D that affect other teams or require help
from them?
Team sends a . Are you about to put something in
another team’s way?

More teams?

Nested Scrum meetings:
Scrum-of-Scrum-of-Scrum
(SoSoS)

Scrum
Team

Scrum Scrum
Team Team

2 GeV tﬁ

Global Sos

Finnish PM
(Emails memo)

Scrum Scrum
Team Team

Team Scrum

Scrum
Team Team

Team Team
10 Finnish teams 6 Indian teams

Scrum
Team
2 GeR

Finnish Sd

Challenges:
- Too many teams
- 3 first questions left out:
“impediments” > Greece

Result: “No problems” eams
Useless meeting?

\J
crum
Team

Team Scrum
Team

10 Fingfh teams 6 Indian teams

“...it would be good if people
would really talk about the

problems there. Sometimes it
feels like everybody just says

‘No problems’, that everything

is going ok, but later on comes
up that this and this does not

work. (. ..) And many are

fighting with the same problem
at the same time.”

Tester

“Maybe part of the reason
is that in general you don’t
get solutions there
anyway. Now we are
scattered around
the world, so we don’t

have an absolute Scrum of
Scrums.”
— Developer

Developer

SoS in Case B

Feature SoS

Grande SoS)
] -videoconference
- videoconference
-1/ week

-1-3 / week .
/ - separate meetings for each feature

Team Team
Team Team 3-5 teams from 1-2 sites

Scrum Scrum

25 teams from 2 sites

SoSM Ca

GrandeyeQS

- videoco

-1-3 / we otings for

_ Challenges:
- In Grande SoS teams report
"what they find important to

share”
What to share?

”Nothing to share”

”Too big”
”No added value”

Feature SoS a solution?

S
/b\gb

s .‘." I

Scr
v Team Scrum

\o Scrum Team Scrum

Scru Team Team
Team 3-5 teams from 1-2 sites

Team

25 tePpfs from 2 sites

“"Feature SoS meetings
are pretty good, because
people there do the

same things, talk “the
same language” and

III
.

have a common goad

Proxy Product Owner

But the [Grande] SoS
meetings between
features, it’s very

difficult to see the added
value, because people
do not talk about the
same things, it just
doesn’t work, it’s too

”

big.

Proxy Product Owner

Community of Practice

a group of people who share a concern, a set of problems, or a passion

about a topic, and who deepen their knowledge and expertise in this area
by interacting on an ongoing basis

e Often used to solve problems related to organizational boundaries
— E.g. role-specific CoPs

. Sug%ested as a mechanism to try in large-scale agile development by
the LeSS framework

— Can be used for a variety of purposes, including role-based concerns (as
guilds), and for coordination and planning

Community-based decision making

e The community (developers, SMs, POs) have decision
making authority related to

— Technical decisions
— Ways of working

— Scheduling of work (in collaboration with product
management)

e The role of management has changed from monitoring
and controlling to supporting the organization

* This is a huge cultural / mindset change compared to
the traditional way of working in Ericsson

Features

User

Stories

Iy

Ericsson: Current STRUCTURE

Product Management

Epic-based

Capabilit
i Product owner Release PGM

Long-term items

ordering

Product AREA1 AREA2 AREA3

Product AREA1 AREA2
CoP CoP cop

" A D

Techfleads participate in-eommunities of practice
Flexible Team allocation, commitiin 2mo char* _.g
< .

2@ > @ e > @ @ 2 @
gwan)(e@man) (280m) | 2®m) (&&m) | Sman

si1 si1 fl1 fl2 XFT XFT XFT XFT XET XFT XFT XET

Do’s and Don’ts

Aim at getting the teams to
coordinate amongst themselves

Use synchronized Sprints if the
organization is not mature

Allow teams autonomy to
decide things themselves that
do not affect other teams

Have the teams decide jointly on
things that affect them all

Easily add extra “coordination
roles”

Add extra coordination meetings

(have the teams make that
decision)

Marketing
& Sales

e
Product Owegss ¢
-

Customers

Product @@ () @

Management QQ@
Product Q Q @ Finances

wners

Product Owner Structure in Nokia

R 2 X7

Product Product Line Project
Owner Manager Manager Manager

Area Product Owner (APO) Area Product Owner (APO)

4)
1-n
APOs % %

Solution System
_Architect Architect,

2

Solution System
Architect Architect

per APO

Scrum
Team

Product Owner Str%cture In Ericsson

7

Product
Manager
Product
Owner
% 1-n

Area Product APOs
Owner Small

R %

Area Product
Small

feature ,

Scrum
Team

Do

Do’s and Don’ts

Consider building a PO team

Have one PO work with 1-3
teams

Locate the POs close to the
teams

In a distributed project, PO on
the same site as the team if you
have site-specific teams

Think carefully about the
competence needed: technical
vs. business

Don’t

— Split the PO role to be a
committee — the PO is always a
person

Marketing
& Sales

e
Product Managz=ent:
:

Customers

Product

Management Q@@
A @)
Product Q Q Q Q‘Q Finances
Owners " 699

Product Management

Product

Management

Product Management:
- Huge mindset change
- Cannot continue in waterfall mode
- Releases: When? What? Role of roadmaps?
- How to plan continuously?

- Involve teams in planning
- Lightweight plans

Joint Release Planning at F-Secure
* 10-14 teams

e 2-3 days planning
e 2-4 month release
* Videoconference

Team N Team N
breakout ! breakout '
area | area
—

Team N Team N
!‘breakoutI breakoutI

~~~~~~~~~~~~

Presentation
area

+ Screen

M e===~e [l e=m=a~

Team N Team N
breakout ! breakout !
| ™., area area
—
Team v Team N
breakout ' 1 breakout!
area N, area
------
7 —
Team N e .
breakoutI Team Y
arca breakout!
- area
Break and 5 —
refreshment ! =

area 5 -




Joint Release Planning at F-Secure




Cont; s Planning at Ericsson

FCSs * 1-2 week cycle time

One ]
pagers

* One pager

* FCS= Feature
ik Concept Study

S/ SR« FO, F1, F2 decision
Weekly

portfolio l
Fie daet;;e steering group >Implementati> pOI nts

meeting

(FO, F1,
!)/

From an 1dea to the beginning of



Workspaces and Infrastructure

* Spaces -
— Team spaces |

— Product Owner team
— Global connections

* Infra

— Continuous integration
— Automated tests

t—  pm— 5
RS ¥
e
[ *: Y
=R
. .




Continuous integration

|
L I Robustness
Speech Quality

Characteristics

Upgrade

[~ |_D_ System Load

FULL Ft tests

2h Function
Test
Practices for Scaling Lean & Agile Development Simulated i
Craig Larman and Bas Vodde LEGACY TEST @
test

COMMON target
build

growing building

1/day/Team

Static

Analyzers y
Simulated

Smoke test
Team build

N/day

Unit Test Developer Component test



Transformation: Be Agile about Going
Agile

* Use a “sandwich” approach (C)

* One product / product area at a

time
Step-wise ¢ * Tailor specifically to each

product setting

e Take an experimental approach
— Try what seems to make sense.
Big-bang If it does not, change it

* Training and coaching

Transformation
Approach

Top-down Bottom-up * |tisajourney, not a project

Leadership Locus



Agile is a Mindset

 Agile is not primarily a set of practices or processes

 Agile is a mindset, a new way of thinking about

software development, customer collaboration, and
management

e Experimental, empirical way of working

rather than planning, controlling to stick
to the plan

— Relates both to product development and
— Organizational development

Casper Lassenius 43



Agile Frameworks

Enterprise g - 2 PORTFOLIO
Epic  Enterprise & ]
Owners  Architect Backlog
Strategic
Themes [YIVRN Lean Budgets | | | KPls
Loan
o Portfolio Mgmt Value Streams
Metrics  —— | |
22 wsir Solution Solution LARGE SOLUTION
Shared - " Economic f= - w @
. Services | goution Solutlon Framework £ =
Arch/Eng ~ Mgmt < N Customer K
) 5 Compliance Backlog
CoP S
N Set-Based by o p K
l ( ’ ’ Milestones Solution Context
Juvy Continuous Dellvery Pipeline PROGRAM
Roadmap
&0 - [ Owners Devops
Vision Systom  Product Continuous Continuous Continuous Releass « Culture
ArctiEng  Mgmt =) Exploration Integration  Deployment  on Demand - Automation
< Pl Object +Lean Flow
- u 3 NI e + Measurement
g ystem Demos . ‘
. System £ = @ r Recovery
Backlog [ Foature B0 re ] 2 Locatre ] % Architectural
— o Runway
(4}  Enaber . LT
Lean UX N
oan 3 X Plan terations TEAM
1 +Execute z ~ | T z
M2 oauct L) CReview 2 pe! H
Devieam ‘Guner  Sorem® Reve. M §
il K € E Q
B e = ) g§D|D D §  suitinQualy
hw  Master : N & & H
Kanban Backlog Develop on Cadence 45
Aglle Teams

e Scaling frameworks
— LeSS (Large Scale Scrum)
— SAFe (Scaling Agile Framewor :
— Use with care ey

WHY LeSS FRAMEWORK? ':m'%::’u’:::"

5 SCRUMMASTER

SPRINT REVIEW
Fr [ ‘) 2 [rerrospecrive NEXT
SPRINT | [ spriny ~C SPRINT
PkRuine 2 |7 29@ COORIINATION 7 Qs (vetaus ereasreenvd
° SPRINT PROPUCT
O replacement 1or aCtua
REFINEMENT
[@)evio ]

“getting” agile



Summary

* Agile implementation at scale is a journey, not
a project
* Mindset is the most important aspect —to

build an experimental mindset both for agile
implementation and product development

e Use frameworks wisely — as a source of ideas,
beware of by-the-book implementation



Contact

Casper Lassenius

casper@simula.no

Casper Lassenius

50



Ericsson Finland R&D

40 years of R&D experience
400 R&D professionals
100 patents filed every year

Main responsibility areas

— Media Resource Functions

— Device Connectivity Platform

— Radio Network Transmission prc
— Network Security Solutions

— Research

Forerunner within Ericsson in
large scale agile & lean adoptio




Big Changes

Bic broiects Decoupled development and
& proj flexible releases




Current STRUCTURE

Product Management

Features

\J\} R Product owner Release PGM

Long-term items

Epic-based

ordering

Epics
J | Product AREA1 AREA2 AREA3
User Product AREA1 AREA2
Stories CoP CoP cop
I | Y I Py W
Techfleads participate in-eommunities of practice
Flexible Team allocation, commitiin 2mo char* _.g

4 ‘

2 @ 2@ 2@ > @ e > @ @ 2 @
s ) (2don) (2@ ) (2®m) (28m) (2Rm) (22 ) (S®an

si1 si1 fl1 fl2 XFT XFT XFT XFT XET XFT XFT XET




More Big Changes

Bic broiects Decoupled development and
& proj flexible releases
System/development/test .
silo organization Cross functional teams




Team Forming session




Visible Changes

Decoupled development and
flexible releases

Big projects

System/development/test

silo organization Cross functional teams

Team spaces

Individual offices




The team space




Changing learning

Big projects

System/development/test
silo organization

Individual offices

Narrow & specialized
competences

Decoupled development and
flexible releases

Cross functional teams

Team spaces

Broader competences and
continuous learning



Changing culture

Big projects

System/development/test
silo organization

Individual offices

Narrow & specialized
competences

Individual accomplishment

Decoupled development and
flexible releases

Cross functional teams

Team spaces

Broader competences and
continuous learning

Team success



Changing thinking

Big projects

System/development/test
silo organization

Individual offices

Narrow & specialized
competences

Individual accomplishment

Following a defined
& detailed processes

Decoupled development and
flexible releases

Cross functional teams

Team spaces

Broader competences and
continuous learning

Team success

Agile and Lean thinking




Changing leadership

Big projects

System/development/test
silo organization

Individual offices

Narrow & specialized
competences

Individual accomplishment

Following a defined
& detailed processes

Top down control

Decoupled development and
flexible releases

Cross functional teams

Team spaces

Broader competences and
continuous learning

Team success

Agile and Lean thinking

More people initiative and
self organization




Large scale and Distributed Agile &
Lean

1] »”

11 7
t

, Interaction between people,
Languages, tools, techniques -

engagement, team dynamics,

architectures, modeling, processes, etc. creativity, self-organization, etc.




Case Organization - Comptel

— A Finland based global telecom

compar]?/ - cares for more than 20% of
all mobile usage data in the world

— Customers: 300 service providers

across 90 countries serving 2 billion
end-customers

— Recently acquired by Nokia Why SAFe?
— 2 business lines developing 4 prod Inter-team
collaboration

SW Development processes: Remove produgt

— Initially waterfall management silos

— 2008 Scrum High-level prioritization
— 2015 SAFe Faster reaction to

market changes




Global Distribution of Comptel
Software Development

Business line 1= Case 1 Business line 2 = Case 2
14 teams 12 teams

Several teams, 2 locations 4 teams

Bulgaria

3 teams 4 teams

One team Several teams

1 team divided between
Finland and Russia

A few persons



Methodology

RQ: How did the SAFe adoption differ between
the business lines?

Data collection: 11 interviews (fall 2016), 1-2
hours each

Casel Case 2
(Finland + Malaysia) (Finland + Malaysia)

SM/team member 2 1
Product Owner 1% 1%
RTE 0+1 1
Managers 2 2+1
Total 6 6

* A person from platform organization supporting both business lines



The SAFe Adcomm

First major change: Program
Increment (PI) planning

— 10 week increments
— 2 day events

— Skype-for-Business between
sites

Closer communication and
collaboration

— Between development teams:

Scrum-of-Scrum meetings
— Between POs and PMs

— Between PMs
— PO community meetings
RTE facilitates

Business vision
Architecture vision
Planning in teams
Scrum-of-Scrums

Planning in teams

Day 2 - Agenda

Breakfast

Planning in teams
Plans presented
Confidence vote

Retrospective




Case 1 Case 2

SAFe training After problems emerged Managers on SAFe courses,
developers internally

Change resistance & Lack of training and Trainings, communication,
engaging people communication -> successful Pl planning
change resistance

Change agents Few internal, leading Several internal, external coach,
change part-time RTE leading change
External coaches Not in the beginning Supported from the start

Release train engineers Part-time RTE (Malaysia)  Full-time RTE (Finland)

15t Pl planning event Light preparation, chaotic Intense preparation, RTE
event supported by a coach, successful
event
Continuous Items found in retros, but Items collected, responsibilities
improvement not much reacted given, followed up by RTE
Satisfaction Work satisfaction 70% of team members satisfied

lowered after SAFe with SAFe in fall 2016




7 Success Factors for SAFe Adoption

1) Training the personnel well in
advance

2) Informing and engaging
people
3) Involving change agents

4) Hiring an experienced external
consultant to train, advice and

support

5) Preparing well for the first Pl
planning event

A Havino A fiill-time RTF



7 Success Factors for SAFe Adoption

1) Training the personnel well in Success factors
of large-scale
advance e
2) Informing and engaging transformations
| (SLR by Dikert et
People al. 2016)

3) Involving change agents

4) Hiring an experienced external
consultant to train, advice and

support

5) Preparing well for the first P!
planning event

A Havino A fiill-time RTF



7 Success Factors for SAFe Adoption

1) Training the personnel well in Success factors
of large-scale
advance e
2) Informing and engaging transformations
0 Ie (SLR by Dikert et
PEOP al. 2016)

3) Involving change agents

4) Hiring an experienced extarme -
consultant to train, advice and

support

5) Preparing well for the first Pl

planning event

G Havino a fiill-time RTF



7 Success Factors for SAFe Adoption

1) Training the personnel well in Success factors
of large-scale
advance e
2) Informing and engaging transformations
0 | (SLR by Dikert et
People al. 2016)

3) Involving change agents

SAFe specific

4) Hiring an experienced exterrre

consultant to train, advice and
support mansgement
5) Preparing well for the first Pl

planning event
G Havino a fiill-time RTF




Backup material



Results: Backlog Management

Stakeholders | Tho Obiof The development
I product . .
I owner leads Organlzatlon
I the PO team
| The Chief PO
|
Product : | | | [ -
manager A single proxy Several proxy
I product owner product owners
| can have can share
multiple a single large
I small features feature
I
I PPO PPO PPO PPO
Early | | | |
phases |,____| _____ .'""l _____ R '™
program ¥ ¥ Vo :
manager 1 : | : : :
¥ ¥ o !
f § o :
1 1
1 Ly ! ! !
1 1 1 1
: E Team | E Team , ! Team Team Team Team |
| . Small '} Small : Large :
Technical | + feature 1 ' feature 2 . : feature !

specialists '



Results: Starting and Closing Stories

Scrum: Stories are opened after sprint
planning and closed at the sprint review

Most often started during the bi-weekly

sprint planning and closed during the bi-
weekly sprint review day.

Less than a third (30%) started during the
sprint planning day and approximately a

third (32%) were closed during the sprint
review day.

Clear mismatch with Scrum

The utilization of developers was kept high
by starting new user stories mid-sprint

— Optimizing resource usage, not "flow”

Developers wanted to demonstrate and close
stories as soon as they were ready

— Became “part of the legacy”

Set In Progress

Sel Closed

Weekday

JJJJJ

Weekday



Results: User-story development time

Scrum: Expected development
time: 1 sprint (14 days) 5856

Actual mean development time:
27 days

Less than a third completed in
one sprint

Clear mismatch with Scrum

One-sample Wilcoxon Signed-Rank Test
confirms (p < 0.001)

Inter-team and external
dependencies postpone user |
StOry ClOSing 0 14 28 42 S6 70 B4 98 112 126 140 154 168 182 196 210
Large and complex system — o

difficult to create small end-to-
end user-stories

Frequency (#)
w -
3 3

N
Q
1

3

Q
|



Results: Estimates and the development time

1007

Scrum: Estimate and DIP should o] T

not correlate, as all stories are i _ =
opened and closed at the same

time regardless of size (in this o B
case: DIP should be 14 days)

Count

No notable correlation overall : D — e 0 ] e

1 2 3 4 5 8 10 13 20 40

— Kendall’s tau-b = 0.255 Estimate
(p < 0.001)

Most teams have no notable bl
correlation 100]
Three teams with moderate
significant correlation

— 18=0.576,0.661, 0.484
(p = 0.010, 0.002, 0.014) ol ©
O]

No explanation for the result
from these teams

©)

0] 0)
@)

80

0]0)
@)

607

Q@000 OO
O

o)©)
oQO@O O O
C@WOO® O O

Days In Progress

1) 39]e oJoJ o)

i

207

O @Oy

o

o1+ ( D @omapogasmin X))

T T T T T T T 1T
10 11 12 13 14 15 16 17 18 19 20 21

Estimate

«© -



AAAAAA

USIKKERHETSVURDERING
FOR NYTTEPOENG OG
KOSTPOENG

JO HANNAY
SIMULA RESEARCH LABORATORY

\d

§ /'
alf

4 .' ) A
@ "" ]
™
N7 Ay

4

K /. d
N O.AS
; f"‘:\

«Nytte og kostnadsstyring av IT-prosjekter i en usikker verden»
HiT-frokostseminar 7. mars 2018 simula

Suksess med IT i offentlig sektor
Copyright © 2016 Jo Hannay (SMI0S)



Nyttestyre

 Hva da?
 Hva vil det si?

simula

Suksess med IT i offentlig sektor

Copyright © 2016 Jo Hannay (SMIOS)



— Lennsomhetsanalyse \

Produktelementer

(

J

(Minste) levedyktige produkt
(Minimal) marketable feature
(Minste) levedyktige endring

(Minimal) viable change

Epos/Epic
Historier/stories

.

Tiltak/Prosjekt A

ravspesifikasjon

Konon

Gevinst
/

%

Produkt

%

Copyright © 2016 Jo Hannay

simula

Suksess med IT i offentlig sektor
(SMIOS)




— Lonnsomhetsanalyse \

Nytte/kost-indeks

Nyttestyre:

/

o

- = produktelement

Maksimere nytte

Copyright © 2016 Jo Hannay

Tiltak/Prosjekt | i forhold til kost
tidlig
/ Nytte-estimat
38,71
Nytte/kost>indeks
Kost-estimat
3,14
Gevinst
/
J
simula

Suksess med IT i offentlig sektor
(SMIOS)




— Lennsomhetsanalyse \ E f fek tm a I

/2

— .
Effek‘rmcy

JJ Tiltak/Prosjekt A

Nytte-estimat

.

- = produktelement

38,71

Nytte/kost>indeks

Kost-estimat
3,14

Gevinst
/

Copyright © 2016 Jo Hannay

simula

Suksess med IT i offentlig sektor
(SMIOS)




\

Ordne produktke

/2

|

— .
Effek‘rmcy

.

Tiltak/Prosjekt A

roduktelement ‘

Copyright © 2016 Jo Hannay

Gevinst

simula

Suksess med IT i offentlig sektor
(SMIOS)




Ordne produktke

4 Tiltak/Prosjekt A

roduktelement

Start her!

Y
BN

o J

simula

Suksess med IT i offentlig sektor

Copyright © 2016 Jo Hannay (SMIOS)



Stoppe i tide

- = produktelement

Tiltak/Prosjekt h

Utsett dennel
\’

)

)

|

o

.J
CE’C‘ %

Produkt

L

Copyright © 2016 Jo Hannay

Gevinst

simula

Suksess med IT i offentlig sektor

(SMIOS)




Nytte/kost-indeks for tiltak

= Virksomhetsmal \
Planlagt Gevinst
(inkl. «myke»)
4 ﬁ AY4 N\ )
\— Effektmd ﬁ&‘fzk‘rm&l ﬁafekfmal W

303 1Tiltak/Prosjekt f 1.5 4 Tiltak/Prosjekt || 443 JTiltak/Prosjekt

/\
\_ \l/ / \. J

Nytte/kost-indeks

- J

simula

Suksess med IT i offentlig sektor

Copyright © 2016 Jo Hannay (SMIOS)

/ Lennsomhetsanalyse

Gevinst




/ Lennsomhetsanalyse

Ordne portefaljen

= Virksomhetsmal
Planlagt Gevinst
(inkl. «myke»)

(=N
\\— Effektmdl

=
Effektmal

a ﬁ )
Effektmal

~

4633 Itak/Pros jekt

3031 Itak/Pros jekt

163, 4 Tiltak/Prosjekt

/

o

Gevinst

J

Copyright © 2016 Jo Hannay

simula

Suksess med IT i offentlig sektor
(SMI0S)



/ Lennsomhetsanalyse

Konstruksjon i portefeljen

= Virksomhetsmal
Planlagt Gevinst
(inkl. «myke»)

(=N
\\— Effektmdl

4 ﬁ‘ h
Effektmal

=
Effektmal

~

4633 Itak/Pros jekt

3031 Itak/Pros jekt

163,4

Tiltak/Pros jekt

o

Gevinst

J

Copyright © 2016 Jo Hannay

simula

Suksess med IT i offentlig sektor
(SMIOS)



/ Lennsomhetsanalyse

Konstruksjon i portefeljen

= Virksomhetsmal
Planlagt Gevinst
(inkl. «myke»)

(=N
\\— Effektmdl

=
Effektmal

=
Effektmal

~

4633 Itak/Pros jekt

3031 Itak/Pros jekt

163,4

Tiltak/Pros jekt

T

\_ J

\ J

_/

%
-

Gevinst

J

Copyright © 2016 Jo Hannay

simula

Suksess med IT i offentlig sektor
(SMIOS)



/ Lennsomhetsanalyse

Konstruksjon i portefeljen

= Virksomhetsmal
Planlagt Gevinst
(inkl. «myke»)

(=N
\\— Effektmdl

=
Effektmal

=
Effektmal

~

4633 Itak/Pros jekt

3031 Itak/Pros jekt

4

163,4

Tiltak/Pros jekt

\ J

_/

_®

Gevinst

J

Copyright © 2016 Jo Hannay

simula

Suksess med IT i offentlig sektor
(SMIOS)



/ Lennsomhetsanalyse

Konstruksjon i portefeljen

U

—

Virksomhetsmal
Planlagt Gevinst
(inkl. «myke»)

(=N
\\— Effektmdl

=
Effektmal

=
Effektmal

~

4633 Itak/Pros jekt

3031 Itak/Pros jekt

4

Tiltak/Pros jekt

163,4

O

\ J

\_ _/

_®

%

Gevinst

J

Copyright © 2016 Jo Hannay

simula

Suksess med IT i offentlig sektor
(SMI0S)



/ Lennsomhetsanalyse

Konstruksjon i portefeljen

= Virksomhetsmal
Planlagt Gevinst
(inkl. «myke»)

(=N
\\— Effektmdl

=
Effektmal

a ﬁ )
Effektmal

~

4633 Itak/Pros jekt

3031 Itak/Pros jekt

4

163, 4 Tiltak/Prosjekt

\_ _/

_®

Gevinst

J

Copyright © 2016 Jo Hannay

simula

Suksess med IT i offentlig sektor
(SMI0S)



/ Lennsomhetsanalyse

Konstruksjon i portefeljen

= Virksomhetsmal
Planlagt Gevinst
(inkl. «myke»)

(=N
\\— Effektmdl

4 ﬁ )
Effektmal

a ﬁ )
Effektmal

~

4633 Itak/Pros jekt

3031 Itak/Pros jekt

4

163,4

Tiltak/Prosjekt

[

&

Rk

&

Gevinst

J

Copyright © 2016 Jo Hannay

simula

Suksess med IT i offentlig sektor
(SMI0S)



/ Lennsomhetsanalyse

Konstruksjon i portefeljen

= Virksomhetsmal
Planlagt Gevinst
(inkl. «myke»)

(=N
\\— Effektmdl

4 ﬁ )
Effektmal

a ﬁ )
Effektmal

~

4633 Itak/Pros jekt

3031 Itak/Pros jekt

4

Tiltak/Prosjekt

163,4

&

k‘&J

&

Gevinst

J

Copyright © 2016 Jo Hannay

simula

Suksess med IT i offentlig sektor
(SMI0S)



Inntjent forretningsverdi
(Earned Business Value)

80 £6 »
E3 c

o Med nytteestimater og
’g 60 E2 4 kostestimater pa
3 . produktelementene kan
) Vs man planlegge for &
o £5 )/ optimere nytte/kost
340 tidlig
s
=
3 20 £84
& .

E4{

0 I I I |

0 20 40 60 80

akkumulert kost (estimert) simula

Suksess med IT i offentlig sektor

Copyright © 2016 Jo Hannay (SMIOS)



Inntjent forretningsverdi
(Earned Business Value)

80
£6_» grunnkalkyle
E3 c

o ..0g man felge med pa
= 60 £E24 hvordan man faktisk
3 £7 ligger an i forhold fil
) Vs planen, for bdde kost
= 10 £5 ) og hytte.
% El§
)
=
3 20 £84—
3 :";

E4{

0 I I [ |

0 20 40 60 80

akkumulert kost (estimert) simula

Suksess med IT i offentlig sektor

Copyright © 2016 Jo Hannay (SMIOS)



KS2 usikkerhetsregime for kost

Figur 1 Sammenhengen mellom kjernebegrepene
(for naermere definisjoner: se kapittel 3)

Resultat av estimering Kostnad Formelle styringsnivaer
og analyse

Restusikkerhet | PeSSimiS'\'lSk
Foreslatt kostnadsramme Vedtatt kostnadsramme
Usikkerhets- for Fagdepartement
avsetning som prosjekteier
Forventet kostnad Styringsramme for
Forventede tillegg utferende etat

optimi stisk
Styringsmal for prosjektieder
(Settes av utferende etat)

Basiskostnad Uspesifisert

Grunnkalkyle



(J42W1LS3) 24AU LJa|NWINYHD

80

o)
o

NN
o

N
o

Inntjent forretningsverdi

(Earned Business Value)

runnkalkyle _-* L
J Y s optimistisk
/ neytral
a“" !‘.
pessimistisk
$
’ V'
,/ £of
P g \QX
A Y“B
/{ .. | 0
i e
il
¥
I I I |
20 40 60 80

akkumulert kost (estimert)



KS2 usikkerhetsregime for forretningsverdi

Forretningsverdi

A

Grunnkalkyle

Forventede
mangler

Usikkerhets

Copyright © 2016 Jo Hannay

Styringsmal for prosjektleder

oy tra

Styringsramme for
utfgrende etat

Pe,s.c,'\m"sms'K

Vedtatt ramme fra fagdepartement

simula

Suksess med IT i offentlig sektor
(SMI0S)



Inntjent forretningsverdi
(Earned Business Value)

KSe 5
ysikkerhets? 9
80 £6~, grunnkalkyle —
&3 - optimistisk

heytral

pessimistisk

0 T T T | KSZ
0 20 40 60 80

akkumulert kost (estimert) \,\S'\\‘kexhd

gregithe



Vi far til dette takket vaere nytte- og kravpoeng

simula

Suksess med IT i offentlig sektor

Copyright © 2016 Jo Hannay (SMIOS)



Nyttepoeng og kravpoeng

([ JJ Tiltak/Prosjekt

— .
Effektmal

Nyttepoeng

roduktelemen

. J

simula

Suksess med IT i offentlig sektor

Copyright © 2016 Jo Hannay (SMIOS)



Nyttepoeng og kravpoeng

([ JJ Tiltak/Prosjekt

— .
Effektmal

roduktelemen

. J

simula

Suksess med IT i offentlig sektor

Copyright © 2016 Jo Hannay (SMIOS)



Uthenting av ekspertkunnskap

Planning
Poker

"30‘ 20 \3 "_"

simula

Suksess med IT i offentlig sektor

Copyright © 2016 Jo Hannay (SMIOS)



/ Lennsomhetsanalyse

Poeng overalt

U

—

Virksomhetsmal
Planlagt Gevinst

=
\\— Effektmdl

ﬁ N\ /7
Effektmal

ﬁ \
Effektmal

Tiltak/Prosjekt
211

‘ 63

Tiltak/Prosjekt

Tiltak/Prosjekt




Grunnkalkyle (fer usikkerhetsvurdering):

Instansiere den relative
poengbaserte vurderingen

= Virksomhetsmal \
L/ Planlagt Gevinst

1 nyttepoeng = 0,36 mill
1 kostpoeng = 0,6 mill

/ Lennsomhetsanalyse

\\— Effektmdl

ﬁ N\ /7
Effektmal

ﬁ \
Effektmal

Tiltak/Prosjekt

Tiltak/Prosjekt

76

37,8

Tiltak/Prosjekt




Grunnkalkyle (fer usikkerhetsvurdering):

Instansiere den relative

poengbaserte vurderingen
/ Lennsomhetsanalyse \

= Virksomhetsmal
L/ Planlagt Gevinst
3.3, [,

\— Effekimd Effektmdl Effektmdl -

Tiltak/Prosjekt Tiltak/Prosjekt Tiltak/Prosjekt
D @
49,1
- J\ J J
neytral

P50 nyttepoeng = 0,31 mill
p50 kostpoeng = 0,78 mill



Grunnkalkyle (fer usikkerhetsvurdering):

Instansiere den relative

poengbaserte vurderingen
/ Lennsomhetsanalyse \

= Virksomhetsmal
L/ Planlagt Gevinst
3.3, [,

\— Effekimd Effektmdl Effektmdl -

Tiltak/Prosjekt Tiltak/Prosjekt Tiltak/Prosjekt
D @
47.8
- J\ J J
Optimistisk

p65 nyttepoeng = 0,32 mill
p35 kostpoeng = 0,76 mill



Grunnkalkyle (fer usikkerhetsvurdering):

Instansiere den relative

poengbaserte vurderingen
/ Lennsomhetsanalyse \

= Virksomhetsmal
L/ Planlagt Gevinst
3.3, [,

\— Effekimd Effektmdl Effektmdl -

Tiltak/Prosjekt Tiltak/Prosjekt Tiltak/Prosjekt
52,3
- J\ J J
Pessimistisk

p15 nyttepoeng = 0,26 mill
p85 kostpoeng = 0,83 mill



Inntjent forretningsverdi
(Earned Business Value)

KSe 5
ysikkerhets? 9
80 £6~, grunnkalkyle —
&3 - optimistisk

heytral

pessimistisk

0 T T T | KSZ
0 20 40 60 80

akkumulert kost (estimert) \,\S'\\‘kexhd

gregithe



Sensitivitetsanalyse

2 Tiltak/Prosjekt
Uten usikkerhetsvurdering
1 nyttepoeng = 0,36 mill =
1 kostpoeng = 0,6 mill =




Sensitivitetsanalyse

2 Tiltak/Prosjekt

Neytral
P50 nyttepoeng = 0,31 mill
p50 kostpoeng = 0,78 mill




Sensitivitetsanalyse

2 Tiltak/Prosjekt

Pessimistisk
p15 nyttepoeng = 0,26 mill
p85 kostpoeng = 0,83 mill




Sensitivitetsanalyse

2 Tiltak/Prosjekt

Optimistisk
= p65 nyttepoeng = 0,32 mill
= p35 kostpoeng = 0,76 mill




Hvordan far vi fram de ulike realverdiene?
(pessimistisk, ngytral, optimistisk)

simula

Suksess med IT i offentlig sektor

Copyright © 2016 Jo Hannay (SMI0S)



Copyright © 2016 Jo Hannay

Kvalitetssikring av Forstudie
styringsunderlag og
kostnadsoverslag (KS2)

Hensikt

A kvalitetssikre styringsunderlag samt
kostnadsoverslag for det valgte prosjektalternativ for
prosjektet legges frem til investeringsbeshutning i
Stortinget. Dels skal det vare en kontroll av om
prosjektet er veldefinert med realistiske rammer,
dels skal analysen peke fremover ved a kartlegge de
styringsmessige utfordringene i gjenstiende faser av
prosjektet.

Hva som utleser kvalitetssikringen
Forventet prosjektkostnad pa over 750 mill. kroner.

Grunnlag for kvalitetssikringen
Prosjekter som meldes opp for KS2 skal vaere fort
frem til fullfort forprosjekt. Ved oppstart av
kvalitetssikringen skal det foreligge:

=  Sentralt styringsdokument for prosjektet.

=  Et komplett basisestimat for ke dene og for
eventuelle inntekter

*  Ferdig utredning av minst to prinsipielt ulike
kontraktsstrategier.

Kvalitetssikringens innhold
Kuvalitetssikrer skal gi tilrading om:

*  Kostnadsramme for prosjektet inklusive
nodvendig avsetning for usikkerhet, samt
styri for utforende etat.

=

*  Hvordan prosjektet bor styres og organiseres for
a sikre en kostnadseffektiv gjennomforing..

Resulaterra Kostnad Vedtatte rammer
Foresat Y Y e (departement som
4 V| prossien
Usikherhes-
avseing
Forventethostnad ) | (- Styingsrammefor
d Forentet V7 utirendecae
kostnads-
N elning
Basshosnad | )T " [+ Syringsmme for
"1 Uspesifiset | pmspktieder (setes av
B . utiarende et}
Gunnkalkyeeter  ©
1 prosek-
! nedbeying s
Kilde Fmansdepartementet

Stortings-
vedtak

l

Forprosjekt |

@)

Nzrmere om innholdet i kvalitetssikringen:

=  Etterse at prosjektkonseptet er veldefinert og
tydelig avgrenset, samt at prosjektet er
viderefort 1 trdd med forutsetningene fra KS1.
Vurdere om det har skjedd endringer i
forutsetningene som kan pavirke anbefalingene
fra KS1.

*  Vurdere om elementene i det sentrale
styringsdokumentet gir et tilstrekkelig grunnlag
for styring av prosjektet, samt estimering og
usikkerhetsvurdering.

*  Kontrollere kostnadsestimatet (komplett,
realistisk. transparent).

*  Gjennomga utredningen av kontraktstrategier.

* Kartlegge suksessfaktorer og fallgruber.

= Gjennomga prosjektets usikkerhetsbilde, med
hovedfokus pa kostnadene. Herunder:

- Estimatusikkerhet. Usikkerhet i kostnader
for enkeltelementer i estimatet og estimatet
som helhet.

- Hendelsesusikkerheter. Eksterne hendel
som enten inntreffer eller ikke inntreffer.

- Reduksjon av risiko. Vurdere hvilken
mulighet prosjektet har til 4 pavirke
usikkerheten. samt gevinster og kostnader

ved risikoreduserende tiltak.

_ P ialet for kostnadsredt q
forenklinger og reduksjoner 1 omfang
vurderes se@rskilt (Ckuttliste™).

*  Gi en samlet tilrdding om kostnadsramme og
styringsramme for utforende etat. Kostnads-
rammen er det niva Stortinget iviteres til 2
vedta, og settes normalt lik P85 minus kuttliste.
Styringsrammen er det niva utovende etat
forventes a levere for. normalt P50.

*  Gien tilrading om organisering og styring av
prosjektet, herunder valg av kontraktsstrategi.
Styring av usikkerhetsavsetningen er en s@rlig
problemstilling. og kan tilsi behov for
supplerende incitamenter.

Tidspunkt for kvalitetssikringen
Prosjektet skal ha gjennomgatt KS2 forut for at det
fremlegges for Stortinget for endelig
investeringsbeslutning. Dette faller normalt sammen
med avslutning av forprosjektfasen.

simula

Suksess med IT i offentlig sektor
(SMI0S)



Copyright © 2016 Jo Hannay

Stortings-
vedtak

l

Kvalitetssikring av Forstudie Forprosiekt |
styringsunderlag og

kostnadsoverslag (KS2) @

Hensikt

A kvalitetssikre styringsunderlag samt Nezrmere om innholdet i kvalitetssikringen:

kostnadsoverslag for det valgte prosjektalternativ for
prosjektet legges frem til investeringsbeshutning i
Stortinget. Dels skal det vare en kontroll av om
prosjektet er veldefinert med realistiske rammer,
dels skal analysen peke fremover ved a kartlegge de
styringsmessige utfordringene i gjenstiende faser av
prosjektet.

=  Etterse at prosjektkonseptet er veldefinert og
tydelig avgrenset, samt at prosjektet er
viderefort 1 trdd med forutsetningene fra KS1.
Vurdere om det har skjedd endringer i
forutsetningene som kan pavirke anbefalingene
fra KS1.

Hva som utleser kvalitetssikringen
Forventet prosjektkostnad pa over 750 mill. kroner.

Grunnlag for kvalitetssikringen
Prosjekter som meldes opp for KS2 skal v;
frem til fullfort forprosjekt. Ved op~-*
kvalitetssikringen skal det foreligg
=  Sentralt styringsdokument fo

= Et komplett basisestimat fr
eventuelle inntekter &

sikkerheten, sam
ved risikoreduserend

-  Potensialet for kostnadsre
forenklinger og reduksjoner
vurderes serskilt ("kuttliste”).

*  Ferdig utredning av m ,:"‘

Gi en samlet tilrading om kostnadsiamim
styringsramme for utforende etat. Kostnads
rammen er det niva Stortinget inviteres til a
vedta, og settes normalt lik P85 minus kuttlisic.
Styringsrammen er det niva ut@Ffende etat
forventes a levere for, normalt P50.

Resulizter 2

Basiskosnad




KS2 usikkerhetsregime for kost

Figur 1 Sammenhengen mellom kjernebegrepene

(for naermere definisjoner: se kapittel 3)

Resultat av estimering

og analyse

Foreslatt kostnadsramme

Forventet kostnad

Basiskostnad

Kostnad Formelle styringsnivaer
--------- 1 RPT T
Restusikkerhet Pess|m|5'\'|5k p85 - 52,75 mill
Vedtatt kostnadsramme
Usikkerhets- for Fagdepartement
ra\ .
neY' p50 = 49,25 mill
Styringsramme for
Forventede tillegg utferende etat

JotimisTisK  p35 = 48 mill
Styringsmal for prosjektieder
(Settes av utferende etat)

Uspesifisert

Grunnkalkyle

pX-tallene er generert ved Monte Carlo-simulering der kostestimatene er antatt uavhengige



KS2 usikkerhetsregime for kost

Figur 1 Sammenhengen mellom kjernebegrepene
(for naermere definisjoner: se kapittel 3)

Resultat av estimering Kostnad
og analyse

Foreslatt kostnadsramme

maks 49,25 mill

Forventet kostnad
Forventede tillegg

Basiskostnad
asiskostna Uspesifi

Grunnkalkyle

85%
sannsynlighet

| for at det koster
Formelle styr maks 52,75 mill

| oessimisTiSK g5 - 5 75 i

Vedtatt kostnadsramme
for Fagdepartement
som prosjekteier

Styringsramme for
utferende etat

optimisTiSK  p35 = 48 il
Sturinasr— gg”arfsjektieder
je etat)

35% .
sannsynlighet  [NINeCRLE®

for at det koster
maks 48 mill

p50 = 49,25 mill



KS2 usikkerhetsregime for forretningsverdi

Forretningsverdi

A

Grunnkalkyle

Forventede
mangler

Usikkerhets

Copyright © 2016 Jo Hannay

optitmistis
Styringsmal for prosjektleder

Styringsramme for
utfgrende etat

Pe,s.c,'\m"sms'K

Vedtatt ramme fra fagdepartement

simula

Suksess med IT i offentlig sektor
(SMI0S)



KS2 usikkerhetsregime for forretningsverdi

Forretningsverdi

A

Grunnkalkyle

p,(.\m-‘sﬂsk P65 = 66,75 mill
0

Forventede Styringsmal for prosjektleder

mangler “¢Y-\—rc\ P50 = 65,50 mill

Styringsramme for
utfgrende etat

Usikkerhets

pess\m'\s""s“ P15 = 61,25 mill

Vedtatt ramme fra fagdepartement

pX-tallene er generert ved Monte Carlo-simulering der nyttetimatene er antatt uavhengige



KS2 usikkerhetsregime for forretningsverdi

65%
sannsynlighet
for at verdi blir

Forretningsverdi

A maks 66,75 mill :
| orsvurder™
50% Grunnkalkyle
sannsynlighet
for at verdi blir
maks 65,50 mill P65 = 66,75 mill

Forventede

15% mangler P50 = 65,50 mill
sannsynlighet
for at verdi blir
maks 61,25 mill

Styringsramme for
utfgrende etat

\.’:"‘

Vedtatt ramme fra fagdepartement

simula

X N Suksess med fentlig sektor
Copyright © 2016 Jo Hannay - (ngog) " °



KS2 usikkerhetsregime for forretningsverdi

35%
sannsynlighet
for at verdi blir
A minst 66,75 mill

Forretningsverdi

50% Grunnkalkyle

sannsynlighet
for at verdi blir
minst 65,50 mill

P65 = 66,75 mill

Styringsmal for prosjektleder
Forventede v g pros)

859%, mangler “gy-\—rc\ P50 = 65,50 mill

sannsynlighet " Styringsramme for
for at verdi blir —ternets utfgrende etat

minst 61,25 mill
simula

I- pess™
Suksess med IT i offentlig sektor

Copyright © 2016 Jo Hannay (SMIOS)

s P15 = 61,25 mill

Vedtatt ramme fra fagdepartement



Hvordan far vi fram pX-verdier?

simula

Suksess med IT i offentlig sektor

Copyright © 2016 Jo Hannay (SMIOS)



Copyright © 2016 Jo Hannay

Kvalitetssikring av Forstudie
styringsunderlag og
kostnadsoverslag (KS2)

Hensikt
A kvali ikre styringsunderlag samt
kostnadsoverslag for det valgte prosjel
prosjektet legges frem til investerings
Stortinget. Dels skal det vare en
prosjektet er veldefinert med real”
dels skal analysen peke fremoy
styringsmessige utfordringent
prosjektet. !

jennomga prosjektets usikkerh
hovedfokus pa kostnadene. Herund

Hva som utleser ¥
Forventet prosjektkostas

Grunnlag for kvi
Prosjekter som melde’

raenimmen = Estimatusikkerhet. Usikkerhet 1 ko
- for enkeltelementer 1 estimatet og csii t
som helhet.

eventuelle innte!

*  Ferdig utredning
kontraktsstrategies

Hendelsesusikkerheter. Eksterne hendelsei
som enten inntreffer eller ikke inntreffer

Kvalitetssikringe
Kvalitetssikrer skal gi ti

* Kostnadsramme for p
nodvendig avsetning ft
styringsramme for utfo
Hvordan prosjektet bor styrél
a sikre en kostnadseffektiv gjel

Resulatera Kostnad
!
N HY
v ) | prosestsien)
Usitkerhes-
avsetning Gi en tilrading om organisering og styring av
prosjektet, herunder valg av kontraktsstrategi.
Y p Styring av usikkerhetsavsetningen er en s@rlig
Forenktiosiad [ /[ B 1% m@imh problemstilling. og kan tilsi behov for
kosthads- supplerende incitamenter.
N oining |
Basstoa L)1 et | e e o Tidspunkt for kvalitetssikringen
e .| uorndec) Prosjektet skal ha gjennomgatt KS2 forut for at det
| :wsz: = fremlegges for Stortinget for endelig
1 nedefing s investeringsbeslutning. Dette faller normalt sammen
med avslutning av forprosjektfasen. - I
Kilde Frnansdegartemenet Suksess med IT i offentlig s
(SM108)




Estimatusikkerhet kost trepunktestimater

1.00 1.80 4.00

®E3 o © @

2.30 3.00 6.00
OE7 o O o

4.00 4.80 8.40
®oE2 o ©
2.00 3.00 6.80
OE4 o o @
3.60 4.80 8.00
®E8 L L J L
3.75 4.80 8.20
®F1 o ® e
7.30 7.80 12.00
®ES o0 L
6.00 7.80 11.00
O E6 @ o L
0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00
simula

Copyright © 2016 Jo Hannay

Suksess med IT i offentlig sektor
(SMI0S)



Hendelsesusikkerhet kost trepunktestimater

® Vulnerability key HR

@® Inferior quality of data

® Unclear goals

® Legislation changes

@ Unfortunate choices of technology

® Market

0.00 1 2.00
@ L @
-1.00 0.00 3.00
o o o
0.00 1 4.00
@ L @
0.00 0.1 3.00
L o
0.00 0.2 4.00
o0 @
-2.00 0.00 1.00
o o o
-2.00 -1.00 0.00 1.00 2.00 3.00 4.00 5.00

-3.00

Copyright © 2016 Jo Hannay

simula

Suksess med IT i offentlig sektor
(SMI0S)



Estimatusikkerhet nytte trepunktestimater

8.00 10.00 11.00
@

® Obj1 Ret1 ®
200 4.00 4.50
® Obj1 Ret? P 0
500  7.50 8.40
® Obj1 Ret3 P PPN
8.00 10.00 11.00
® Obj2 Ret1 P PP
3.00 6.00 8.00
® Obj2 Ret2 PS P ®
3.75 9.00 9.20
® Obj2 Ret3 PS o
10.50 20.00 22.00
® Obj3 Ret1 ® © o
3.50 4.00 6.00
® Obj3 Ret2 o0 o
3.00 6.00 7.00
® Obj3 Ret3 o -
0.00 5.00 10.00 15.00 20.00 25.00
simula

Copyright © 2016 Jo Hannay

Suksess med IT i offentlig sektor
(SMI0S)



Hendelsesusikkerhet nytte trepunktestimater

® Resistence to change of procedure

® Resistence to change of organization

® Changes in strategic governance

® Resistence to changes in strategic

governance
® Return from adjacent projects

® Satisfaction criteria not understood

-4.00

-2.50 i 1.00
e o] e
2.70 -0.50 1.00
® ® ®
-2.40 0
e e
-3.00 0.5
@ e
-3.25 1 0.00
@] e e
-2.00 0.00 1.00
e @ e
-3.00 -2.00 -1.00 0.00 1.00 2.00
simula

Copyright © 2016 Jo Hannay

Suksess med IT i offentlig sektor
(SMI0S)



1.00 1.80 4.00
oE3 ° .
230 3.00 6.00
E7 . .
4.00 480 8.40
oE2 * o L ]
200 3.00 6.80
oL4 * . *
360 480 800
L] L L4 o
375 480 8.20
13 e o .
7.30 7.80
(13 oo
6.00 7.80
L1 * L ]
000 2.00 4.00 6.00 800 10.00
1
000 200
@ Vulnerabiity key HR . 3 .
100 000
®interior qualty of data . °
000 1
®Unclear goals ™y .
000 0.1
®Legislation changes -
000 0.2
@ Unfortunate choices of technology oo
200 000 100
®Market Y Y Y
300 200 100 000 100 200
. 800 1000 11.00
®Obj1 Ret1 : 2 *o
X 200 400 450
® Obj1 Ret2 . o0
5.00 7.50 8.40
®Obj1Ret3 ° e
800 1000 11.00
®0Obj2 Ret1 * oo
3.00 600 800
®Obj2 Ret2 e o e
375 9.00 9.20
®Obj2Ret3 o
10.50
®Obj3Rett *
3.504.00 6.00
®Obj3Ret2 L L 4
3.00 6.00 7.00
®0bj3Ret3 L) o0
0.00 5.00 1000 15.00
05
® Resistence to change of procadure ~1..50 °
® Resistence 1o change of organization -2.70 0.50
. [
® Changes In strategic governance 7-.40
® Resistence to changes in strategic 3.00 0
governance * *
® Return from adjacent projects 3.25 1
} projec . .
® satisfaction criteria not understood ~2.00
-4.00 -3.00 -2.00 -1.00

Copyright © 2016 Jo Hannay

3.00

Simulere

prosjektlop

» 9’_‘3 &°

’bb’,.b(o(? ’bo’ 9(9 b?‘b(&o% @(0\4-3 ‘o»’%b@ ‘oo’(ox‘) ‘c?’
60 000 prosjektlop
178

il “

e 0?’.‘9 gf" ({P’.\" @ @’1'? @‘f’ b\‘.("

o

60 000 prosjektlop

1 2 3 4 s 6 7 8 9 1w 0.04
0.03
0.02
oo 0.01
0
o4
03
400 o2
-
01
0
1 2 3 s s 3 7 s s 1w
4.00
.
400 5.00
a0
l €0
0
= |
— \_¢ 0
2000 2200 O @ % < a 2 ’ £ t ' 003
. B 0.025
0.02 +
0.015
2500 001 .
0.005
r 80 o
1.00
o + €0
1.00
L 0
10
- ¥ 0
or ° % < a 2 ’ [ < '
1.00
°
1.00 2.00

20.00
0 050
° L
050
*
0.00
*
0.00
°
0.00

M Project Total

FOL OO IO P

simula

Suksess med IT i offentlig sektor
(SMIOS)



Oppsummering

Nyttepoeng i tillegg til kostpoeng

Bruk metoder for usikkerhetsvurdering: .7 - . =~
o o . . R m: H” s,
OQSC( pC( nYTTe (for‘r‘e-‘-nlngsverdl)! : : o o e60 000 pros]ek‘rjlap
Fra grunnkalkylen, generer A
alternative verdier som reflekterer E> M\Hl\[ B
usikkerhetsvurderingene... ‘ i
80 - €6, grunnkalkyle
& - optimistisk
. . 2 o | g2 / . t neytral
..0g plugg dem inn i kost- og nyttepoeng : e [ 7 pessmistik
for a fa usikkerhetsbaserte E P
styringsrammer for bade g |/
kost og forretningsverdil LAy,

o
o -

20 40 60 80
akkumulert kost (estimert)



i
V.
devel
in the
reast
suffic

You
In £
routi
can
chan
sami
the ¢

Tt
meal
foun
dow
than
busii
of p
ality
valu
impi
putti
the |
valu

Pa
shou
ing 1
But,
valu
age
proc.
Cust
as it

THE
Agil
and

prod
man
taine
publ
elicit
shou
stak(
user

http://simula.no

Benefit Points
— The Best Part of the Story —

Earned Business Value Management

- See that You Deliver Value to Your Customer -

Jo Erskine Hannay, Simula Research Laboratory,
Hans Christian Benestad, ExpertWare AS, Kjetil Strand, PROMIS AS

he order in which you send your backlog items into

whean will be able to reap benefit from

what functionality. This can have substantial impact on market timing, enterprise earnings and project manager survivor rate.
There are several ways to order a backlog, and sophisticated methods and tools exist to do so—for example, in release planning.
But the important point we'll make here, is that no matter what scheme for backlog ordering you choose to use, you cught to be
explicit on the order in which you realize potential business value. To this end, we'll prasent methods to express business value
relative to cost in your backlog and methods 1o monitor how much potential business value youTe realizing along the way—in
addition to cost expended. Given the cantral role proclaimed to business value in Agile, we said in [9] that you should assign

benefit points to your project’s product elements (epics
and stories); with at least the same vigor and rigor
with which you assign story points. To do this, assign
points (for example, in a benefit poker session using
the Fibonacci scale) according to how much you think
an epic contributes to the project’s distinct objectives
(Fig, 1). Objectives, which are part of the business case
for the project, express the effect in/on the organization
that the project’s deliverables are intended to induce.
The objectives may, in turn, be assessed to contribute to
the enterprise’s planned returns to varying degrees. The
fact that objectives may not represent equal value is then
reflected by balancing the benefit points accordingly. We
summarized all this in [9] into a core practice of Benefit
Point Estimation for Epics.

As an example from the public service domain, Fig. 2
shows Returns Retl-Ret3, Objectives ObjI1-Obj3 and
Epics E1-ES. Fig. 2(a) exemplifies the first estimation task
to be done in the core practice— to provide business
value estimates for epics in the form of benefit points.
For example, using the Fibonacci sequence familiar from
planning poker, epic ET has been estimated to contribute
to Objectives Obj1, Obj2, Obj3, respectively, 13, 5 and 8
benefit points (BP); in all 26 benefit points. The total
number of benefit points assigned in this manner is
211 in this example. Fig. 2(b) exemplifies the second
estimation task to be done—to estimate how much each
objective contributes to returns. The total strategically
planned return in Ret1, Ret2 and Ref3 is 100 million. The
project’s objectives Objl, Obj2 and Obj3 are estimated
to contribute 21.5 million, 25 million and 30 million,
respectively, to that return; in all 76.5 million. Thus, the
project’s objectives, once fulfilled, contribute unevenly
toward the return of the project, and only partly to the
enterprise’s strategically planned retum. Then, Fig. 2(c)
shows the benefit points automatically balanced due to
objectives having different value. Your tasks only involve
providing estimates for the parts with white background
in Figure 2. The green parts can be automatically gener-
ated by your tool (e.g., Excel).

S0M M 30M

L]

Fig. 1. Product element with both associated story points (8)
and benefit points (13, 8, 5). Objectives contribute to various
degrees to planned enterprise returns.

This core practice effectively links the project’s product
estimates to the business case and to strategic plans. The
methodology is to hamess and systematize stakeholders’
insights and project learning; rather than to employ
sophisticated tools for calculating estimates that, by the
way, fair no better on average than expert estimation
[14). €
nitive processes and give sufficient, rather than optimal,

o, methods must be simple, support expert’s cog-

results [8). Although simple, the core practice supports
powerful monitoring techniques.

You can use benefit points in combination with story
points to obtain means to monitor and adjust your
project. Assigning story points (another core practice) is
a common activity done routinely s, so we'll
assume you know how to do this; e.g., in planning poker
sessions. However, we'll make a few remarks in the
context of benefit/cost management.

Benefit manifests itself after deployment, so to get
a sensible benefit/cost measure, cost estimates should
include post-deployment cost in addition to develop-
ment cost. Traditionally, story points reflect development
cost only. However, it's common to assume that life-
cycle cost is proportional to, or linearly dependent on,
development cost; e.g., [13], depending on domain and

Copyright (c) 2016 the authors. Accepted version. Final version 1o appear in IEEE Software.

Copyright © 2016 Jo Hannay

For a leere mer

- Kontakt ossl!
johannay@simula.no
kjetil.strand@verdix.no
benestad@expertware.no

- Ta kurset IT Project Professional ITPP
(Metier Academy)

- prosjektmetodikken PRINCE2®

- sammen med smidige teknikker og

- beste praksis for kontraktshandtering.

46 PDU til PMP-sertifiserte fra Project
Management Institute

http://www.smidigeprosjekter.no/itpp

- sek pa «Hannay» -> publications
Http://hitledelse.no - Suksess med IKT i of fentlig sektor -> Publikasjoner

simula

Suksess med IT i offentlig sektor
(SMI0S)



Det var det

Business Value Cost Cost Performance
Performance Index Index

Kost

simula

Suksess med IT i offentlig sektor

Copyright © 2016 Jo Hannay (SMIOS)



60

50

40

30

20

10

15

10

-10

-15

-20

aes®

Neste gang: Periodisering ...~~~

= = Initial

benefit MC p50 cost MC p50 budgeted

------- benefit MC p15 cost MC p85 budgeted




