
Kortfattet oppsummering av resultater fra prosjektet:

NYTTESTYRING I IT-PROSJEKTER
Prosjektleder: Magne Jørgensen

Simula Metropolitan

Nedenfor følger en kortfattet oppsummering av det som oppfattes som de viktigste resultatene fra
prosjektet Nyttestyring i IT-prosjekter, støttet av midler fra Prosjekt Norge. Utfyllende
dokumentasjon av resultater finnes i vedleggene.

Tema 1: Hva kjennetegner IT-prosjekter som leverer god nytte?
Prosjektet bygger videre på tidligere undersøkelser av hovedsakelig norske IT-prosjekter.
Gjennomgående i alle undersøkelsene er følgende mønster (kjennetegn) for IT-prosjekter som
leverer god nytte:
• Fleksible kontrakter (per time e.l. baserte avtaler, ikke fastpris)
• Rammeavtaler med flere leverandører, og prosjektet kjøres som «internprosjekt» og ikke som

«leverandørprosjekt». God kunde-evne til å velge de mest kompetente utviklere og andre fra,
helst flere, leverandører. (dårligste modell var valg av en stor leverandør som kjører prosjektet).

• God bruk av smidige metoder, med vekt på fleksibelt innhold og hyppige leveranser. I tillegg har
vi funnet at:

o Mens mer kravendringer ikke reduserer vellykketheten til smidige prosjekter (smidigs
motto om «embrace change» støttes alså av empiri, så gjelder det motsatte for ikke-
smidige prosjekter (som dermed har rett i at «scope creep» er uheldig – for dem).

o Smidige metoder passer minst like godt for store som for små prosjekter. Dette har det
vært en del diskusjon om, med mange som har ment at smidig kun passer for de mindre
prosjektene. Vi finner at det er grunn til å tro at det er særlig for de store prosjektene at
smidig utvikling er viktig for å kunne levere god nytte.

• Underveis nyttestyring og plan for hvordan nytte skal hentes ut. Et gjennomgående funn i
undersøkelsene er at det som virkelig skiller de som lykkes har gode prosesser for underveis
nyttestyring og planer for uthenting av nytte. Slike prosesser og planer ser ikke ut til å måtte være
avanserte, men kan for eksempel godt bestå i at prosjektet har regelmessig gjennomgang av
prioriteter av leveranser (både hva og når) der oppdaterte kost-nytte vurderinger brukes, samt
planer som er klare på hvem som er ansvarlig, hvordan og når nytte skal realiseres.

• Bruk av autonome team. Her må bemerkes at det er store variasjoner og at vi ikke har solide
resultater på hvor stor grad av autonomi som er bra og hvordan effekten avhenger av andre
forhold. Forskning på dette pågår og resultater vil trolig foreligge i starten av 2019.

Tema 2: Hvordan gjennomføre en god analyse av nytte, inkludert
usikkerhetsanalyse?

Felles enhet for nytte som muliggjør god nyttestyring
Mens kostnader stort sett har en felles enhet (kroner og øre) så er det ikke alltid like enkelt å
sammenfatte total nytte. Typisk har IT-prosjekter en liste med nytte-effekter der noen er målt i
kroner og øre, mens andre nytteeffekter er målt på annen måte, eller ikke målt i det hele tatt. Dette
vil i mange tilfelle vanskeliggjøre en god underveis nyttestyring – og også en god sammenligning
mellom alternativ.

Prosjekt	Norge	
Vi har foreslått en metode for kvantifisering av nytte, med felles enhet (nyttepoeng) til bruk for
kvantitativ underveis nyttestyring. Metoden består noe forenklet i:
• Angivelse av liste av målsetninger for prosjektet (f eks M1, M2 og M3)
• Angivelse av viktighet for disse i prosent av total nytte levert (f eks M1 utgjør ca. 50% av nytten

prosjektet skal levere og M2 og M3 25% hver.)
o Dersom ett av målene er kvantifisert (f eks at M1 skal gi 20 mill. i innsparte kostnader) så

kan de andre beregnes ut fra dette (f eks at siden M1 gir 20 mill innsparing, så er verdien
av M2 og M3 5 mill hver).

o Dersom ingen av målene er kvantifisert så brukes «nyttepoeng», som angir relativ nytte (f
eks at M1 gis 20 nyttepoeng, og man derav avleder at M2 og M3 går 5 nyttepoeng hver).

• Liste av leveranser for prosjektet (f eks L1, L2 og L3)
• For hver av leveransene angis hvor mye disse bidrar til måloppnåelse (f eks hvor mye L1 bidrar

til oppnåelse av nytten ved M1, M2 og M3).
• Bidraget fra hver leveranse til nytteverdi (måloppnåelse) brukes til vurdering av prioritet til

leveranse og dermed til underveis nyttestyring.
• Kontinuerlig tilbakemelding fra underveis leveranser og hva disse har oppnådd av nytte, og om

nødvendig justering av nytteestimater per leveranse og/eller mål.
• Evaluering av faktisk oppnådd nytte i etterkant.

Forskningsprosjektet har evaluert denne metoden for kvantifisering og styring av nytte, både hos
SPK og Oslo kommune, og funnet at den lar seg gjennomføre. I hvilken grad den fører til bedre
nyttestyring er fortsatt ikke avklart. En bok om metoden (på Springer-forlaget, vil være gratis
nedlastbar) er planlagt for 2019.

Bedre metoder for usikkerhetsanalyse av nytte (og kostnader)
Vi har avdekket av estimering og usikkerhetsanalyse på nytte er et svært umodent område for de aller
fleste norske IT-organisasjoner. Stort sett gjøres ikke usikkerhetsanalyser på nytte i det hele tatt, eller
så gjøres det uten å kvantifisere usikkerheten. Dette finner vi at typisk gir en urettmessig fordel for
de usikre alternativene (konseptene), som for eksempel nyutvikling, målt mot der mer forutsigbare
alternativene, som videreutvikling av eksisterende løsninger. Manglende usikkerhetsanalyse av nytte
gjør det også slik at faktisk ulønnsomme tiltak kan se ut til å være lønnsomme. Vi har foreslått – og
delvis evaluert – en metode for usikkerhetsanalyse for nytte (og kostnader) som baserer seg på at
prosjektet:
• Finner fram til (eller bruker ekspertvurderinger) fordeling for tidligere avvik mellom estimert

nytte (og kostnad) for lignende prosjekter (f eks at 50% av tidligere prosjekter av lignende type
har levert 80% eller mindre enn estimert)

• Bruker denne fordelingen til å estimere usikkerheten til nåværende estimat (f eks at dersom
nytten er estimert til 20 mill, og 50% av tidligere estimater av nytte har levert 80% eller mindre
nytte enn estimert, så er p50 (50% sikkert) for dette prosjektet at prosjektet leverer minst 16 mill.
i nytte)

Ovennevnte metode har blitt evaluert for reelle prosjekter for evaluering av kostnader, og funnet å gi
økt realisme. Forskningsprosjektets analyser tyder på at dette også vil være tilfelle for
usikkerhetsanalyser av nytte.

Prosjekt	Norge	
Vedlegg 1: Vitenskapelige artikler med resultater fra prosjektet
• Jørgensen, M. (2018, May). Do Agile Methods Work for Large Software Projects?

In International Conference on Agile Software Development (pp. 179-190). Springer, Cham.
• Jørgensen, M. (2018, December). Looking back on previous estimation error as a method to

improve the uncertainty assessment of benefits and costs of software development projects. In
9th International Workshop on Empirical Software Engineering Practice (IWESEP 2019).
(Innhold også presentert på Prosjekt Norges årlige konferanse i 2017)

• Jørgensen, M. (2018, December). Scope creep or embrace change? A survey of the connection
between requirement changes, use of agile, and software project success. 12th International
conference on Project Management (ProMAC) (pp. 673-681).

• Jørgensen, M. (2018). Relations between Project Size, Agile Practices and Successful Software
Development (Akseptert for utgivelse i IEEE Software).

Vedlegg 2: Utvalg av industri- og forskningspresentasjoner der resultater fra
prosjektet er presentert

• Keynote XP-conference, 2018. When is agile better? How the use of agile and autonomous
teams affect success differently in different contexts (and other results)

• Presentation PMI/Prosjekt Norge, 2018: Agile software development and benefits
management: A perfect match.

• Keynote ICSSE, 2018. What makes software projects successful?
• Invited talk, Delft symposium on data analytics, 2018. The world is skewed. Ignorance, use,

misuse, misunderstandings, and how to improve cost and benefits uncertainty analyses in
software development projects.

• Keynote Software (DnD), 2018. Milliardinvesteringer i digitalisering. Hva gir det oss?
• Presentasjoner på HIT-nettverkets seminarer:

o Oktober 2018: Storskala smidig IT-utvikling: Erfaringer med Spotify-modellen, SAFe og
LeSS, Casper Lassenius

o Mars 2018: Usikkerhetsvurderinger for nyttepoeng og kostpoeng, Jo Hannay

VEDLEGG 1

Scope Creep or Embrace Change? A Survey of the
Connections Between Requirement Changes,

Use of Agile, and Software Project Success

Abstract

Traditionally, a high degree of requirement

change has been considered harmful for the success
of software projects. Software professionals who use
agile software development methods tend to view this
topic differently. They tend to view requirement
changes more as opportunities, which should be
welcomed. Possibly, both views are correct but valid
in different software development contexts. This
paper aims at increasing the understanding of the
connections between the degree of requirement
change, choice of development method, and project
success. Seventy software professionals were asked to
provide information about their last software project.
A higher degree of requirement changes, here
defined as more than 30% of the requirements added,
deleted, or changed during the project’s execution,
was connected with a higher proportion of successful
projects in an agile development context, but only
when this included frequent deliveries to production.
Our results consequently support that the agile claim
of “embrace change” has merit, but only in agile
contexts.

1. Introduction

When software professionals are asked what they

consider the main risk factors of software projects,
they tend to include factors related to the requirement
specifications. The survey reported in [1] is a good
illustration. In that survey, the respondents ranked
“misunderstanding the requirements” the second
most important risk factor, “lack of frozen
requirements” the sixth most important risk factor,
and “changing scope/objectives” the seventh most
important risk factor. Ranking incomplete and
changing requirement specifications as important risk
factors is in accordance with the traditional view of
software development and requirement engineering.
This view typically considers a requirement
specification as consisting of “a set of system
requirements which, as far as possible, is complete,
consistent, relevant and reflects what the customer
actually wants” [2].

Some software professionals seem to have
different views on changed requirements. Those who

use agile development methods recommend, among
others, valuing “responding to change over following
a plan,”1 and to promote the principle of “welcome
changing requirements, even late in development.”2
They also seem to think of requirement changes
during the project’s execution as opportunities to
increase client values rather than as threats to the
success of the project [3]. This corresponds with the
observation that agile methods to some extent are
designed for flexibility in scope and frequent
requirement changes, e.g., as implemented in the
common agile practice of flexible scope and frequent
deliveries to client with opportunities for feedback
and learning during the project execution.

The study reported in this paper tries to shed
some light on the connection between requirement
changes, development methods, and project
outcomes. This include the goal of examining
whether both viewpoints could be right, that is, that
many requirement changes are connected with better
outcomes for agile software projects, but worse
outcomes for non-agile software projects. The main
research questions are:

RQ1: How is the connection between amount of
requirement changes and project outcome dependent
on the development method?

RQ2: Among agile software projects, is there a
difference in the connection between amount of
requirement change and project outcome for project
with and without frequent delivery to clients?

The second research question is motivated by our
previous research, see [4], where frequent delivery to
client were found to be one of the practices with
strongest connection to project success.

The remainder of this paper is organized as
follows: Section 2 describes selected related work on
the effect of requirement changes, Section 3
describes the design and the results of the survey,
Section 4 discusses the results and concludes.

2. Related work

A study by Serrador and Pinto [5], which

examined 1002 software projects, suggests that the

1 www.agilealliance.org/agile101/the-agile-manifesto/. Retrieved
May 22, 2018.
2 www.agilealliance.org/agile101/12-principles-behind-the-agile-
manifesto/. Retrieved May 22, 2018.

most successful projects were those with most effort
spent on specifying the requirements before the
projects were initiated. The survey, and review, paper
[6] reports “functional, performance, and reliability
requirements and scope are not documented” as the
second most important software project risk factor. A
survey of software managers reports that they
considered requirement volatility among the top
software failure risk factors [7].

The project survey reported in [8] finds a negative
correlation between requirement changes and cost
control. Similarly, the study in [9] reports a negative
effect of requirement changes on product
performance, measured as system reliability, ease of
use, ability to meet users’ requirements, and user
satisfaction. The same study also reports a negative
effect of requirement changes on project performance
measured as budget and schedule control.

The survey of software projects reported in [10],
which examined the connection between increases in
the requirement scope and the degree of client
satisfaction with the project, found that a large
requirement increase was connected with more
project failures for traditional projects but not for
agile projects. Although this finding is highly
relevant for the study in this paper, and indicates that
the choice of development method matters for the
effect of requirement changes on project outcomes,
the study had limitations. The traditional projects, on
average, were much larger (and were likely to be
more complex) and had a higher number of
requirement changes than the agile projects. The
difference in how requirement changes and client
satisfaction were connected, therefore, could be a
result of factors other than the choice of development
method.

A survey of 399 agile software projects [11]
reports that agile teams’ ability to respond to
requirement changes, measured as the proportion of
change requests implemented (response
extensiveness) and the speed (response efficiency),
was positively connected to the ability of the
software functionality delivered to meet the
requirements, achieve goals, and satisfy users. A high
response extensiveness had no large effect on the
other project success dimensions, suggesting that
responding to additional requirement changes was
connected to better client satisfaction and benefits,
without harming the other project success measures.

The survey reported in [4] found that agile
projects with a flexible scope had almost twice as
high a success rate as agile projects without a flexible
scope. This result may be interpreted as supporting
the benefit of adopting the agile principle of
welcoming change.

An inherent problem in studying requirement
specifications and requirement volatility is that we do
not have commonly accepted and easy-to-implement
measures of the size and complexity of a requirement

change, the types of requirement changes, or the
degree of change of a requirement specification [12].
The negative, or positive, consequences of a
requirement change may depend, for example, on
whether the change is only minor or leads to a large
amount of rework, whether due to improved insight
into client needs or external changes, and whether the
change appears early or late in the project.

The great majority of previous research results, as
far as we can see, suggest that more requirement
changes are connected with more problematic and
less successful software development. However, most
of the research was conducted in a non-agile software
development context. Therefore, whether the
“embrace change” claim made by agile software
professionals has some merit remains unproved. This
is in particular the case, taking into account that more
recent studies [4, 10, 11] give some hope for positive
effects of requirement changes in the context of agile
projects.

3. The survey

3.1. Design

The survey requested the participants, who were

project managers and software developers from
different organizations participating in a seminar on
software cost estimation, to provide information
about their last completed software projects with
budgets of more than €100,000. Seventy-five
responses were received. Five of the responses were
incomplete, i.e., included “don’t know” responses,
and therefore removed, leaving 70 complete
responses. Each response included information about
the following:
• The respondent’s role (free text) and length of

experience (years).
• The budget category of the project: €100,000–1

million3, €1–10 million, >€10 million.
• The type of development method used: Agile,

Waterfall/Traditional, Mixed/other.
• Frequency of completed software functionality

delivered to production or to user evaluation
with feedback (this variable was included based
on the results in [4], where delivery frequency
was an essential variable for success with agile
projects): None, 1–4 per year, More than 4 per
year.

• Percentage of requirements added, removed,
and/or updated: 0–10%, 10–30%, More than
30%.

• Reasons why the requirements were added,
removed, and/or updated:4 Learned about client

3 The original questions were in Norwegian and used Norwegian
currency. The budget values are approximate monetary values
assuming that EUR 1 = NOK 10.

needs or gained insight during the project
execution, External changes, Insufficient
requirement analysis before the project started,
Other reasons.

• Perceived project outcome (for each of the
project success dimensions below, the
respondent was requested, based on his/her
evaluation, to choose one of the outcome
categories: Very successful – Successful –
Acceptable – Problematic – Very problematic):
Client benefits, Technical quality of software,
Cost control, Time control, Work efficiency.

We categorized the total performance (outcome)

of a project as follows:
• Successful: The project was evaluated as very

successful or successful on all five success
dimensions (client benefits, technical quality of
software, cost control, time control, and work
efficiency)

• Acceptable: The project was not successful but
was evaluated as at least acceptable on all five
success dimensions.

• Problematic: The project was evaluated as
problematic or very problematic on at least one
of the success dimensions.

In the analysis section, we mainly present
analyses based on the proportion of successful and
problematic projects. The proportion of acceptable
projects can be derived from the proportion of
successful and problematic projects.

Due to few responses for some of the categories,
we decided to join the categories “Mixed/other” and
“Waterfall/traditional”, creating the category “Non-
agile”. This gives very rough development method
categories, but enables a comparison of what was
considered agile by the respondents with the other
projects. Similarly, the few responses with less than
10% requirement changes led us to join this category
with the 10-30% category. The choice of 30% as our
boundary value is to some extent arbitrary, but
hopefully useful to gain some insight into difference
of project with much and with less requirement
changes.

3.2. Limitations

When interpreting the survey results, the

following limitations should be kept in mind:
• The sample of respondents and their projects is

not necessarily representative of other contexts.
While this may strongly affect the characteristics
of the data set, it may have less impact on the
connections we focus on in this study. There is
clearly a need for more studies to assess the

4 It was possible to give more than one reason for the requirement
changes. Twenty-five percent of the respondents did this.

generality and context dependencies of the
results identified.

• The survey asked for the perceived (subjective)
performance related to the success dimensions
and did not use more objective measures of the
project outcome, what they meant by use of agile
or non-agile development methods, and a
requirement change. Although this makes the
evaluations highly subjective, and there will be
differences in use of terms among the
respondents, it may also have advantages. It may
be, for example, that delivering the software one
month late is acceptable in one project context
but leads to large problems in another context.
Mechanical evaluations of measured time
overrun may not enable such meaningful
distinctions.

• The respondents (34% were project managers or
team leaders and 66% were software developers)
were all from the provider side of the projects.
This may have affected the assessment of the
projects’ success. The results of a similar survey
(see [4]) found, however, that providers and
clients tend to give similar evaluations of
software projects, even when evaluating the
client benefits. In addition, a role bias is mainly a
problem for the main (interaction) analyses in
this paper if the role bias is different for different
development methods, which we believe is not
the case.

• The number of responses is low for the
interaction analyses of this paper, especially for
non-agile projects. This limits the robustness of
the results, excludes the use of tests for statistical
significance, and points to the need for follow-up
studies to validate the findings.

There is no guarantee that the respondents had the
required information about the project, even though
they chose to respond and had the option of leaving
questions unanswered or using the don’t know
category. The respondents’ experience, which, on
average, was 14 years (only 6 respondents had less
than 4 years of experience), gives some confidence
that they were sufficiently competent to possess the
required information.

3.3. Results

As can be seen in Table 1, 43% of the projects
had more than 30% requirement changes (inserted,
removed or updated requirements) during project
execution. On average, the projects with more than
30% requirement changes were somewhat more
successful (27% of them were successful) than those
with less than 30% requirement changes (18% of
them were successful). The projects with more than
30% requirement changes were also, on average,
slightly less problematic (33% of them were
problematic) than those with less than 30% changes

(37% of them were problematic). This not substantial
difference in project outcomes related to requirement
changes hides, however, a large difference when the
development method is included as an interacting
variable (see Fig. 1 and Fig. 2).

Table 1. Project characteristics

Variable Characteristics
Project size 58% less than €1 million

33% more than €1 million
9% larger than €10 million

Development
method

74% agile
26% non-agile

Delivery frequency

36% 4 or fewer per year
64% more than 4 per year

Requirement
changes

57% less than 30%
43% more than 30%

Reason for change
(more than one
reason possible)

78% learning/insight
16% external change
27% insufficient up-front
analysis

Project outcome 25% successful
39% acceptable
36% problematic

Fig. 1 shows that the proportion of successful

projects increased (from 15% to 31%) with more
requirement changes for agile projects but decreased
(from 25% to 0%) for non-agile projects. Notice that
the proportion of successful non-agile projects is
higher than that of the agile projects when there are
fewer than 30% requirement changes but
substantially lower when there are more requirement
changes. There were only four non-agile projects
with more than 30% requirement changes, which
means that we should interpret the decrease in the
success rate for the non-agile projects with great care.
Previous research (see Section 2), however, supports
a decrease in the success rate for non-agile software
projects with many requirement changes. The results
for non-agile projects with many requirement
changes, although based on very few observations,
therefore, are in accordance with some previous
results.

Figure 1. Development methods, requirement
change, and proportion of successful projects.

Fig. 2 shows a weak decrease (from 31% to 27%)

in the proportion of problematic projects with more
requirement changes for agile projects. The
corresponding observation for non-agile projects is
an increase (from 50% to 75%) in the proportion of
problematic projects. As before, the number of non-
agile projects with more than 30% requirement
changes are few, and the results for non-agile projects
with many requirement changes, consequently, are
not very robust.

Figure 2. Development methods, requirement
change, and proportion of problematic projects.

Table 2 shows the proportion of projects

evaluated as “very successful” or “successful” for
each of the success dimensions, development
methods, and requirement change categories. The
data suggest that the use of agile development
methods is connected with an increase in the
proportion of successes from less than 30% to more
than 30% requirement changes for all success
dimensions, but especially for the success dimensions
technical quality (72% - 48% = 24% point increase)
and cost control (50% - 38% = 12% point increase).

Table 2. Proportion projects evaluated to be
“successful” or “very successful” for each success
dimension, development method, and requirement

change category
Requirement
change

Less than
30% change

More than
30% change

Development
method

Agil
e

Non
-
agile

Agil
e

Non
-
agile

Succes
s dim.

Client
benefits

77% 54% 85% 25%

Technica
l quality

48% 42% 72% 0%

Cost
control

38% 50% 50% 0%

Time
control

46% 50% 54% 0%

Work
efficienc
y

62% 42% 67% 50%

In total, answering our RQ1, the results displayed

in Fig. 1, Fig. 2 and Table 2 suggest that there is an
interaction effect from development method on the
connection between requirement change and project
outcome. The agile software projects performed
better in contexts with more requirement changes,
while the opposite was the case for the non-agile
projects.

Motivated by the results in [4], and answering
RQ2, we expected to see a difference in the success
rate between agile projects with many (more than
four per year) and with fewer (four or fewer per year)
deliveries of completed software functionality to
production or to user evaluation. This is what we see
in Fig. 3 and Fig. 4.

Figure 3. Delivery frequency, requirement change,

and success for agile projects.

As can be seen in Fig. 3 and Fig. 4, the agile

projects were more successful and less problematic in
contexts with many requirement changes when the
projects had frequent deliveries (more than 4 per
year) to production or proper user evaluation of
completed functionality. Frequent delivery did,
however, not make any difference in the project’s

success rate and gave only a slightly lower rate of
problematic projects when there were fewer
requirement changes. To what extent frequent
deliveries to production, with feedback, causes more
requirement changes, leads to project success in
situations with more requirement changes, or
indicates a development context with success
inducing elements, such as more involved clients, is
hard to see from the data. This is another topic for
future examination.

Figure 4. Delivery frequency, requirement change,

and problems for agile projects.

Requirement changes may differ considerably in

complexity, implications for rework, and how much
the changes disrupt the project execution. As an
initial step in understanding the influence of the type
of requirement change on the project performance,
we examined the effect of many requirement changes
on project performance for the three reasons (learning
or better insight, external changes, and insufficient
requirement analysis) individually. The results are
displayed in Table 3. We include only the results for
the agile projects, because there were too few
observations to give similar, meaningful results for
non-agile projects.

Table 3. Success and failure rate, per reason
(agile projects only)
Req.
change

Less than 30%
changes

More than 30%
changes

Reason

Le Ex In Le Ex In

Success 20
%

0% 0% 30
%

17
%

20
%

Accept. 55
%

33
%

50
%

33
%

50
%

20
%

Problem
.

25
%

67
%

50
%

22
%

50
%

60
%

i Le = Learning/insight, Ex = External, In = Insufficient analysis

The data in Table 3 do not reveal a clear pattern

connecting the reasons for and the degree of
requirement changes. The proportion of successful
projects increased and the proportion of problematic
projects decreased with more requirement changes
for all requirement change reasons. Notice, however,

the higher problem rates for agile projects where the
requirement changes were categorized as externally
induced or caused by insufficient analysis compared
to when the requirement changes were categorized as
caused by learning or better insight.

Contextual differences may explain the
differences in how the requirement changes,
development method, and project performance are
connected. Many important contextual variables were
not collected, such as how late the requirement
change occurred and the skill of the development
team. It might nevertheless be interesting to examine
if there are essential differences between agile and
non-agile projects based on the data we collected; see
Table 4. The values related to “Reasons for changes”
are the proportion of projects where the reason was
believed by the respondent to have caused all or part
of the requirement changes, if any, in the project.
None, one, or more reasons could be provided for the
same project.

Table 4. Context differences between agile and
non-agile
Characteristic Measure or

category
Development
method
Agile Non-

agile
Respondent’s
experience

Mean length of
experience (years)

13 15

Budget size Proportion costing
less than €1
million

62% 44%

Proportion costing
more than €1
million

38% 56%

Requirement
change

Proportion with
less than 30%
change

50% 76%

Proportion with
more than 30%
change

50% 24%

Reason for
changes

Proportion due to
learning/insight
during project
execution

82% 67%

Proportion due to
external changes

25% 11%

Proportion due to
insufficient
requirement
analysis

22% 44%

As can be seen, there were fewer, but not

substantially fewer, agile projects (38% vs. 56%) in
the category of projects with a budget of more than
€1 million, more agile projects (50% vs. 24%) in the

category of projects with more than 30% requirement
changes, and for agile projects, respondents were
more likely to provide the requirement reasons
“learning/insight” (82% vs. 67%) and “external
changes” (25% vs. 11%) and less likely to give the
reason “insufficient requirement analysis” (22% vs.
44%). There were no large differences in the average
length of respondents’ experience for agile and non-
agile software projects (13 vs. 15 years). The
directions of the contextual differences shown in
Table 4 are not surprising. Agile development
methods are more commonly used for smaller
projects, agile projects receive more requirement
changes, and agile software professionals are less
likely to think about requirement changes caused by
insufficient requirement analysis, given less emphasis
on producing up front complete and detailed
requirement specifications. The higher degree of
externally induced requirement changes may indicate
that agile methods were more frequently used in
contexts with higher environmental (external factors-
based) uncertainty. All these differences point at
possible differences in development complexity, for
example, slightly larger projects for non-agile and
perhaps more requirement uncertainty for agile
projects, which, in turn, may explain some of the
observed differences in the project outcomes for agile
and non-agile projects. There is, however, little that
suggest that the identified differences in contexts,
which are not very large, explain the reported
differences in how well agile and non-agile software
projects succeed in situations with much requirement
changes.

4. Discussion and conclusion

Most software projects experience that

requirements are added, removed, or changed during
the project execution. In as much as 50% of the agile
and 24% of the non-agile projects included in our
survey, more than 30% of the requirements were
added, removed, or updated during the project
execution. Requirement changes may be viewed as a
threat or as an opportunity. Traditionally,
requirement changes have been viewed as a risk
factor, that is, a threat to the success of a software
project. Agile software developers, however, tend to
view requirement changes differently. They tend to
view changes as creating opportunities to deliver
more client benefits, and view them as something that
should be welcomed in software projects.

The present results provide support for both
views. When agile methods were used, but only when
used with frequent deliveries of completed
functionality to productions or user evaluation, many
requirement changes were connected to higher
proportions of successful projects and lower
proportions of problematic projects. For non-agile
projects and agile projects without frequent deliveries

to production, the outcome was the opposite. Many
requirement changes for such projects were
connected to less successful and more problematic
projects.

The connection examined in this paper, that is
how the development method influences the
connection between requirement changes and
software project success, has not been much
investigated empirically. The only previous study we
were able to identify is the one reported in [10]. As
reported in Section 2, that study found a positive
connection between a large increase in requirements
and more satisfied clients for agile but not for non-
agile software projects. Although limited to added
requirements, i.e., not including changed
requirements, and using client satisfaction as the only
success measure, this result is consistent with what
we found.

In the present study, non-agile projects (see Table
4) were larger than agile projects but not by much,
and we believe the difference is not large enough to
explain the differences in project outcomes. Indeed,
we found larger projects to be somewhat more
successful and less problematic (33% successful and
30% problematic projects) than smaller projects
(21% successful and 39% problematic projects).

The limited number of variables and observations
in this study means that we were unable to gain much
insight into the underlying mechanisms that created
the difference in project performance for different
levels of requirement changes and different
development methods. We cannot, as discussed in
Section 3, be sure that the observed differences
between successful and problematic projects were
caused by, as opposed to just correlated with,
differences in development method.

It is perhaps not surprising that a development
method designed for flexibility in scope and frequent
requirement changes, that is, the agile software
development method, leads to better project
outcomes than traditional, non-agile, methods when
there are many requirement changes. What is perhaps
more surprising is that projects following the agile
method, when including the agile practice of frequent
delivery to client, did better when there were more
rather than fewer requirement changes. Currently, we
find it hard to suggest mechanisms that should make
it easier to succeed with more rather than fewer
requirement changes. We suspect that the use of agile
development methods, but mainly when
implementing a practice with frequent deliveries to
production, combined with many requirement
changes correlates with the presence of other,
essential success factors. This may include success
factors related to more competent and involved
clients, better and more frequent feedback and
learning during project execution, better benefits
management processes, more skilled developer
teams, and better software testing facilities [13].

These interpretation challenges, together with the
study limitations discussed earlier, mean that there is
a need for more, carefully designed studies that not
only try to replicate our results and examine the
connections, but also try to better understand the
context, patterns, and mechanisms that lead to the
differences. This may be important in an evidence-
based attempt to improve requirement management
practices and project outcomes.

Changes in requirements are here to stay, and our
ability to manage them is essential for success in
software development. The present results provide
some evidence in support of that agile development
methods, when implementing frequent deliveries to
production or to user evaluation with feedback, are a
good choice when expecting many requirement
changes.

5. References

[1] Schmidt, R., K. Lyytinen, and P.C. Mark Keil,
Identifying software project risks: An international Delphi
study. Journal of management information systems, 2001.
17(4): p. 5-36.

[2] Sommerville, I. and P. Sawyer, Requirements
engineering: a good practice guide. 1997: John Wiley &
Sons, Inc.

[3] Erickson, J., K. Lyytinen, and K. Siau, Agile modeling,
agile software development, and extreme programming: the
state of research. Journal of database Management, 2005.
16(4): p. 88.

[4] Jørgensen, M., A survey on the characteristics of
projects with success in delivering client benefits.
Information and Software Technology, 2016. 78: p. 83-94.

[5] Serrador, P. and J.K. Pinto, Does Agile work?—A
quantitative analysis of agile project success. International
Journal of Project Management, 2015. 33(5): p. 1040-1051.

[6] Kappelman, L.A., R. McKeeman, and L. Zhang, Early
warning signs of IT project failure: The dominant dozen.
Information systems management, 2006. 23(4): p. 31-36.

[7] Tiwana, A. and M. Keil, The one-minute risk
assessment tool. Communications of the ACM, 2004.
47(11): p. 73-77.

[8] Zowghi, D. and N. Nurmuliani. A study of the impact of
requirements volatility on software project performance. in
Software Engineering Conference, 2002. Ninth Asia-
Pacific. 2002. IEEE.

[9] Govindaraju, R., et al., Requirement volatility,
standardization and knowledge integration in software
projects: an empirical analysis on outsourced IS
development projects. Journal of ICT Research and
Applications, 2015. 9(1): p. 68-87.

[10] Suma, V. and K. LakshmiMadhuri. Influence of Scope
Creep on Project Success: AComparative Study between

Conventional ApproachVerses Agile Approach. in IEEE
International Conference on Advanced research in
Engineering and Technology (ICARET). 2013.

[11] Lee, G. and W. Xia, Toward agile: an integrated
analysis of quantitative and qualitative field data on
software development agility. Mis Quarterly, 2010. 34(1):
p. 87-114.
[12] McGee, S. and D. Greer, Towards an understanding of
the causes and effects of software requirements change:
two case studies. Requirements Engineering, 2012. 17(2):
p. 133-155.

[13] Jørgensen, M., P. Mohagheghi, and S. Grimstad,
Direct and indirect connections between type of contract
and software project outcome. International Journal of
Project Management, 2017. 35(8): p. 1573-1586.

Do Agile Methods Work for Large
Software Projects?

Magne Jørgensen(&)

Simula Research Laboratory, 1364 Fornebu, Norway
magnej@simula.no

Abstract. Is it true that agile methods do not scale well and are mainly useful
for smaller software projects? Or is it rather the case that it is particularly in the
context of larger, typically more complex software projects that the use of agile
methods is likely to make the difference between success and failure? To find
out more about this, we conducted a questionnaire-based survey analyzing
information about 101 Norwegian software projects. Project success was mea-
sured as the combined performance of the project regarding delivered client
benefits, cost control, and time control. We found that that projects using agile
methods performed on average much better than those using non-agile methods
for medium and large software projects, but not so much for smaller projects.
This result gives support for the claim that agile methods are more rather than
less successful compared to traditional methods when project size increases.
There may consequently be more reasons to be concerned about how non-agile,
rather than how agile methods, scale.

Keywords: Agile development methods ! Project size ! Project success

1 Introduction

Much has been written about the extent to which agile methods are suitable for large
software projects. An early attempt to summarize what we know about agile methods
and their success when used in large software projects, authored by Dybå and Dingsøyr
[1], concludes: “The evidence […] suggests that agile methods not necessarily are the
best choice for large projects.” Similarly, the review published by Jalali and Wohlin [2]
finds: “[…] there is not sufficient evidence to conclude that Agile is efficiently appli-
cable in large distributed projects.” More recent reviews, see for example [3, 4],
emphasize challenges related to the use of agile methods for large software projects
and, similarly to the previous reviews, report little or no evidence to support the use of
agile methods for large software projects. Not only is much of the research literature
sceptical about the use of agile methods for large software projects, but several soft-
ware professionals also seem to think that agile methods are mainly for smaller soft-
ware projects.1 It is, in addition, not difficult to find examples of failed, large-scale agile

1 For an example of an opinion-based argumentation ofwhy agile is not useful for large projects, see blog.
inf.ed.ac.uk/sapm/2014/02/14/agile-methodologies-in-large-scale-projects-a-recipe-for-disaster/. This
blog post concludes that “Large-scale development projects are serious business: agile development
has no place here.”

© The Author(s) 2018
J. Garbajosa et al. (Eds.): XP 2018, LNBIP 314, pp. 179–190, 2018.
https://doi.org/10.1007/978-3-319-91602-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_12&domain=pdf
http://blog.inf.ed.ac.uk/sapm/2014/02/14/agile-methodologies-in-large-scale-projects-a-recipe-for-disaster/
http://blog.inf.ed.ac.uk/sapm/2014/02/14/agile-methodologies-in-large-scale-projects-a-recipe-for-disaster/

software projects.2 A comprehensive review of experience reports and case studies on
the challenges and success factors regarding the introduction of agile in large-scale
software development can be found in [5].

There are also reported cases where agile methods have been successfully used for
large software projects, see for example [6], and reports where agile methods are
claimed to have had a positive impact on the outcome of large software projects, see for
example [7, 8]. Finally, there are guidelines on how to succeed with large-scale agile
projects, such as [9], which claim to be based on the successful completion of large
software projects using agile methods.

These diverging results and opinions on the use of agile on large software project
may appear to be confusing. There are, however, several reasons why we should not
expect consistent results and opinions about the effect of using agile methods on larger
software projects:

• We do not have a clear, commonly agreed upon understanding of what it means to
work agile. Agile is not a well-defined method, but rather a set of values, principles,
and practices. There are consequently many good and bad ways of implementing
and using agile methods. There may, in addition, be external factors that complicate
the use of good agile, such as the use of fixed price contracts or insufficient
involvement by the client [10]. The same problems are present for non-agile
methods, which may include an even larger variety of practices. There are good and
bad ways of using most software development methods and it is frequently not clear
when it is the inexperience and lack of skill in using a method and when it is
inherent flaws in a method that contribute to software project failures.

• The development method is only one of many factors affecting the success of a
software project. Other factors, especially the level of provider and client compe-
tence, may be even more important to explain the outcome of large software
projects.

• We do not agree on what a large software project is. A large software project may
be defined relatively to those that an organization is used to completing or with
absolute measures such as budget size, number of developers, complexity, or
number of development teams [11]. In addition, the difference between a large
project (e.g., a project consisting of two teams and costing 10 million Euros) and a
mega-large project (e.g., a project consisting of ten teams and costing 100 million
Euros) may be substantial.

• We see it when we believe it (confirmation bias). People are good at summarizing
experience in a way that defends their beliefs. As documented in [12], those who
believe in the benefits of agile will tend to find evidence supporting the use of agile
even in random project data without any true patterns connecting development
method and project success. One example of how to confirm a strong belief in agile

2 See, for example, the UK National Audit Office report: www.nao.org.uk/wp-content/uploads/2013/
09/10132-001-Universal-credit.pdf. It is from the report not clear to what extent they think that it was
agile development itself, the actual implementation and use of agile or the project’s lack of expe-
rience with the use of agile that contributed to the failure of the project.

180 M. Jørgensen

http://www.nao.org.uk/wp-content/uploads/2013/09/10132-001-Universal-credit.pdf
http://www.nao.org.uk/wp-content/uploads/2013/09/10132-001-Universal-credit.pdf

(or other) development methods is to categorize a software project as non-agile, or
at least not using agile methods properly, if it fails, i.e., if it works it is agile, if it
fails it is not true agile.

Despite the above methodological problems we may be able to find out more about
the scalability of agile methods by systematically collecting empirical evidence. If large
software projects using agile methods typically perform better than projects using other
methods, then this supports the claim that agile methods do scale to larger projects. It
may give this information even if we do not know exactly how agile was implemented
and used by the projects, are unable to use a commonly accepted and good definition of
what a large project is, and there are other factors that also matter for success. Many
companies may have adopted agile methods just recently, which means that if we find
that agile software projects perform worse, but perhaps not much worse, than non-agile
as the project size increases, we may not be able to conclude that agile methods will not
work on larger software projects. It may then improve as their competence in using the
methods improves.

In this paper we empirically compare agile and non-agile software development
projects by surveying a set of projects, collecting information about their size (as
measured by their budget), their use of development methods, and their degree of
success. The research question of our study is:

As indicated earlier in this section, there are many studies on the use of agile
methods on large-scale software projects, and there are many strong opinions about
which method is the better to use on large projects. In spite of this, we have been
unable to find peer-reviewed research articles empirically analysing size-dependent
differences in success of projects using agile and non-agile development methods.
A non-peer reviewed study by the Standish Group from 20163 reports that projects
using agile development methods performed better than those using waterfall-based
methods for small, medium, and large project sizes, and particularly the largest pro-
jects. For the largest projects, the failure rate was 42% for waterfall projects and 23%
for agile projects. For the smallest project, the difference is smaller, with an 11% failure
rate for waterfall and a 4% failure rate for agile projects. This study indicates that agile
methods is not only well suited for large projects, but also increasingly more suited as
the project size increases. This is, to our knowledge, the only related work we can
compare our results with.

How is the relationship between project size, as measured by its budget, and success
affected by the development method?

3 There are reasons to be sceptical about the results published by the Standish Group; see our
comments on their survey methods on a previous survey in [13]. In its 2016 report the Standish
Group (www.standishgroup.com), improved the definition of success to include not only being on
time, on cost, and with the specified functionality, but also that the project delivers satisfactory
results (blog.standishgroup.com/post/23). Satisfactory results include, they claim, client value. This
improvement, given that it is properly integrated in their survey and that they have improved their
sampling of projects, may make their recent results more valid and useful.

Do Agile Methods Work for Large Software Projects? 181

http://www.standishgroup.com
http://blog.standishgroup.com/post/23

The remaining article is organized as follows. Section 2 describes the survey
design, limitations, and results. Section 3 briefly discusses the results and concludes.

2 The Survey

2.1 Survey Design

The respondents of the survey were participants at a seminar on management of
software development projects in Oslo, Norway, March 2015.4 All participants were
asked to provide information about their last project, including:

• The respondent’s role in the project.
• The project’s outcome in terms of client benefits, cost control, and time control.
• The project’s budget.
• The project’s use of agile practices, and the respondent’s assessment of how agile

the project had been.

We received information about 108 projects. An examination of the responses
showed that seven of them did not include the required information regarding one or
more of the variables used in our analysis. Removing these left 101 valid responses in
the data set.

Characteristics of the respondents and their projects include:

• Role: 56% of the respondents were from the client side and 44% from the provider
side.

• Client benefits: 35% were categorized as “successful,” 55% as “acceptable,” and
10% as “unsuccessful” or “failed.”

• Cost control: 30% were categorized as “successful,” 32% as “acceptable,” and 38%
as “unsuccessful” or “failed.”

• Time control: 37% were categorized as “successful,” 32% as “acceptable,” and 31%
as “unsuccessful” or “failed.”

• Budget: 48% of the projects had a budget less than 1 million Euros, 25% between 1
and 10 million Euros, and 27% more than 10 million Euros.5

• Agile practices: When asked to rank their project with respect to how agile it was
from 1 (very agile) to 5 (not agile at all), 17% responded with 1, 25% with 2, 40%
with 3, 14% with 4, and 4% with 5.

The participants were asked to name the agile practices they had used in their last
project. Comparing those descriptions, emphasizing the use of product backlogs,
frequent/continuous delivery to client, the use of scrum or similar management pro-
cesses, autonomous teams, and the use of velocity to track progress, with responses
regarding the degree of agility of the project using the scale from 1 to 5, we found it

4 Results from this survey have not been published earlier, but the design and project performance
measures are similar to those in the survey published in [14].

5 The original survey was in Norwegian and used Norwegian Kroner (NOK) as currency. The
Euro-values are the approximate values corresponding to the NOK-values.

182 M. Jørgensen

reasonable to cluster the projects as “agile” if the response was 1 or 2, “partly agile” if
the response was 3, and “not agile” if the response was 4 or 5. There were, however, no
simple connection between the self-assessed degree of agility (using the scale from 1 to
5) and the implemented agile practices. This makes the development category
boundaries, especially the boundary between agile and partly agile, to some extent
fuzzy and subjective. While this may limit the strength of the analysis, it is clear from
the analysis that those categorized as agile on average have more agile practices than
those categorized as partly agile. While we believe that this is sufficient for meaningful
analyses, it is important to be aware of that degree of agility in our study is based on the
respondents subjective assessment.6

Our measure of a project’s level of success used a combination of three success
dimensions: client benefits, cost control, and time control. To be categorized as “ac-
ceptable”, we require a score of at least “acceptable” on all three dimensions. Fifty-four
percent of the projects were categorized as acceptable using this definition. Notice that
the inverse of “acceptable” (46% = 100% − 54%) is the set of projects assessed to
have a non-acceptable outcome on at least one of the success dimensions, i.e., the set of
“problematic” projects. To be categorized as “successful,” we require that all three
dimensions should be assessed as “successful.” Only 12% of the projects belonged to
that category.

2.2 Limitations

The survey has a number of limitations that it is important to be aware of when
interpreting the results, including:

• Representativeness. Our sample consists only of Norwegian software projects and is
a convenience sample based on input from people visiting a seminar on software
project management. The common use of agile methods in our data set suggests that
many of the companies represented by the participants had (possibly much)
experience in the use of agile methods. From more in-depth studies of software
projects in similar contexts, see [10], and common sense we know that companies
tend to have more problems in the initial phase when they introduce agile methods
compared to subsequent projects. The level of agile maturity and other largely
unknown sample characteristics, may affect how valid it is to extrapolate our results
to other context.

• Perception, not measurement: Several of the survey questions, particularly those
related to project outcome, are based on the respondents’ perceptions, not measured
data. This has some drawbacks, for example, different people may have different
viewpoints regarding the same project. It may also have some advantages. The
degree of success in time control, for example, may be more meaningfully assessed
subjectively. In one context, a 10% time overrun may point to a time control failure,
while in another context, the same overrun may be acceptable.

6 The set of agile practises, combined with the project’s own assessment of degree of agility, of a
project and other project data used in the analyses will be sent to interested readers upon request to
the author.

Do Agile Methods Work for Large Software Projects? 183

• Role bias. We decided to join the responses of those on the client and the provider
side, even though there may have been systematic differences in their responses. For
example, those in the client role seem to have been less critical than those in the
provider role when assessing the outcome of the projects. Using our measure of
acceptable outcomes, those on the client side found 66% of the projects to be
acceptable, while the figure was 46% when assessed by those on the provider side.
Those on the client and the provider side gave however approximately the same
average score regarding client benefits, i.e., 37% of the projects assessed by the
clients were successful regarding client benefits, while the figure was 32% when
assessed by the providers. If the role bias is not dependent on the degree of use of
agile methods, which we believe is the case, joining the responses of the two roles
will not affect the direction of the interaction effect reported later in this paper.

• Correlation vs. causation. There may be systematic differences in the non-measured
characteristics of the agile and the non-agile software projects. In particular, it may
be that the client and/or provider competence was higher for those using one type of
development method, e.g., providers and clients using agile methods may have been
more competent than those using non-agile methods. This will exaggerate the effect
of a development method if the most competent clients and providers are more
likely to choose the better development method. As with role bias, the direction of
the interaction effects from project size is less likely to be affected by such
differences.

• Few observations. There are few projects for several combinations of development
method and project size category, in particular for the non-agile projects. The low
statistical power means that tests of the statistical significance of the interaction
effect on the development method are not feasible. It also implies that there are
limitations regarding the robustness of our results and that small to medium large
differences in success rates are caused by random variance in outcomes. Our results
should consequently be understood as initial, exploratory results to be followed up
with more empirical research.

• Size vs. complexity. We categorize project size based on the project’s budget. While
the budget is likely to reflect the amount of effort spent, it does not necessarily
reflect the complexity of the project. There may consequently be relevant differ-
ences between large and simple, and large and complex software projects that our
analysis is unable to identify.

2.3 Results

The results section emphasizes key takeaways from our study, especially those related
to the connection between project size, development method and project outcome.

Table 1 gives the proportion of observations per budget and development method
category. It shows that agile and partly agile methods are frequently used even for the
largest projects. They are used in 33% and 56% of the largest projects, respectively.
While this does not say anything about the usefulness or harm of using agile methods
as project size increases, it documents that many of the software professionals involved
considered agile and partly agile development methods to be useful for larger projects.
Notice the increase in use of partly agile as the project size increases from medium

184 M. Jørgensen

to large. This may suggest that some software professionals believe less in working
fully agile when projects get large.

Table 2 and Figs. 1, 2, 3, 4 and 5 show the interacting effect of development
methods on the connection between project size and:

(i) Proportion of acceptable projects (Fig. 1)
(ii) Proportion of successful projects (Fig. 2)
(iii) Mean score for client benefits (Fig. 3)
(iv) Mean score for cost control (Fig. 4)
(v) Mean score for time control (Fig. 5)

The scores of the success dimensions are coded with 4 for successful, 3 for
acceptable, 2 for unsuccessful, and 1 for failed projects. This scale is, according to
measurement theory, an ordinal scale. We believe, nevertheless, that the mean scores
(which strictly speaking require at least an interval scale) give a good indication of the
typical outcome regarding client benefits, cost control, and time control.

Our results do not support the claim that projects using agile or partly agile methods
do worse than non-agile methods on larger projects. Quite the opposite, the data indicates
that large projects using agile or partly agile methods were more likely to be assessed as
acceptable than medium large projects using these methods. The non-agile projects
performed reasonably well for the smallest projects, just a little worse than the agile and
partly agile projects, but very badly on the medium and large software projects. In fact,
among the non-agile projects of medium and large size, there were no projects in our data
set that met the criterion of being perceived acceptable or better on all success criteria.
Although consisting of a small sample, only nine projects used non-agile methods for
medium and large projects; this weakly indicates that it is non-agile rather than agile
methods that have most problems with larger software projects. This result—i.e., that
non-agile methods score relatively poorly compared to agile projects and that the per-
formance difference increases as the project size increases—is similar to that reported in
the Standish Group’s Chaos Report for 2016.

For most of the measures, there were not much difference in the assessed outcome
for projects using agile and only partly agile. The most notable exceptions were pro-
jects assessed to be successful in all three dimensions (Fig. 2), wherein agile performed
better than partly agile for large, but worse for medium large projects.

Table 1. Proportion use of development method per budget size category

Budget size Agile Partly agile Not agile # projects
Small 37% (18) 42% (20) 21% (10) 48
Medium 58% (15) 19% (5) 23% (6) 26
Large 33% (9) 56% (15) 11% (3) 27
projects 42 40 19 101

Do Agile Methods Work for Large Software Projects? 185

Table 2. Success with use of development method per budget size category

Budget size Agile Partly agile Not agile
Total success (% acceptable)
Small 72% 60% 60%
Medium 46% 40% 0%
Large 67% 60% 0%
Total success (% successful)
Small 28% 10% 10%
Medium 7% 20% 0%
Large 11% 7% 0%
Client benefits (mean score)
Small 3.5 3.1 3.1
Medium 3.3 3.4 3.0
Large 3.4 2.8 2.3
Cost control (mean score)
Small 3.2 2.9 2.9
Medium 3.5 2.8 1.8
Large 3.4 2.9 1.0
Time control (mean score)
Small 3.3 3.3 2.8
Medium 2.9 2.6 1.7
Large 2.8 2.9 2.5

Fig. 1. Proportion of acceptable projects

186 M. Jørgensen

Fig. 2. Proportion of successful projects

Fig. 3. Client benefits

Do Agile Methods Work for Large Software Projects? 187

Fig. 4. Cost control

Fig. 5. Time control

188 M. Jørgensen

3 Discussion and Conclusion

There are reasonable arguments both in favour and against good performance of agile
methods on large projects. An example of an argument in favour of their use is that it is
increasingly more unlikely that requirements will remain stable as the size of the
software project increases. The understanding of needs is likely to change during the
course of the project, and there will most likely be external changes leading to
requirement changes. Agile development methods, implementing a process where
change is a more integrated part, may consequently be better able to deal with the high
requirement volatility of many large projects [10, 14]. An example of an argument
sometimes used against the use of agile methods on large software projects is that the
lack of upfront planning and architectural thinking, make projects more risky with
increasing size.7 Consequently, it is possible to analytically argue in favour of both
agile and more plan-driven, non-agile software development methods. To find out
which argumentation in practice is the stronger, and whether agile methods typically
are good for large projects, requires empirical evidence.

The results from this study do this and provide evidence about how projects with
agile practices perform on important success criteria. As pointed out in Sect. 2.2 there
are several threats to the validity of our results, but the results do give some evidence in
support of that the typical medium and large software projects using agile practices
perform acceptably on essential success criteria. This was not the case for typical
software projects using non-agile methods in our data set. Consequently, our data
suggests that the question is not so much whether agile methods work well for large
software projects, but rather how well non-agile software development methods work
for such projects. Large projects are inherently risky, and our data suggests that the
failure risk is reduced rather than increased with the use of agile methods instead of
non-agile methods.

References

1. Dybå, T., Dingsøyr, T.: Empirical studies of agile software development: a systematic
review. Inf. Softw. Technol. 50(9), 833–859 (2008)

2. Jalali, S., Wohlin, C.: Global software engineering and agile practices: a systematic review.
J. Softw. Evol. Process 24(6), 643–659 (2012)

3. Khalid, H., et al.: Systematic literature review of agile scalability for large scale projects. Int.
J. Adv. Comput. Sci. Appl. (IJACSA) 6(9), 63–75 (2015)

4. Turk, D., France, R., Rumpe, B.: Limitations of agile software processes. arXiv preprint
arXiv:1409.6600 (2014)

5. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-scale agile
transformations: a systematic literature review. J. Syst. Softw. 119, 87–108 (2016)

7 See for example: www.6point6.co.uk/an-agile-agenda, which predicts that UK is wasting 37 billion
GBP annually on failed agile projects. This number is based on a survey of CIOs, suggesting a 12%
complete failure rate of agile projects. They did not calculate the waste on failed non-agile projects.

Do Agile Methods Work for Large Software Projects? 189

http://arxiv.org/abs/1409.6600
http://www.6point6.co.uk/an-agile-agenda

6. Dingsøyr, T., et al.: Exploring software development at the very large-scale: a revelatory
case study and research agenda for agile method adaptation. Empir. Softw. Eng. 23, 490–520
(2016)

7. Lagerberg, L., et al.: The impact of agile principles and practices on large-scale software
development projects: a multiple-case study of two projects at ericsson. In: ESEM 2013.
IEEE, Baltimore (2013)

8. Ebert, C., Paasivaara, M.: Scaling agile. IEEE Softw. 34(6), 98–103 (2017)
9. Elshamy, A., Elssamadisy, A.: Applying agile to large projects: new agile software

development practices for large projects. In: Concas, G., Damiani, E., Scotto, M., Succi, G.
(eds.) XP 2007. LNCS, vol. 4536, pp. 46–53. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-73101-6_7

10. Jørgensen, M., Mohagheghi, P., Grimstad, S.: Direct and indirect connections between type
of contract and software project outcome. Int. J. Proj. Manag. 35(8), 1573–1586 (2017)

11. Dingsøyr, T., Fægri, T.E., Itkonen, J.: What Is large in large-scale? A taxonomy of scale for
agile software development. In: Jedlitschka, A., Kuvaja, P., Kuhrmann, M., Männistö, T.,
Münch, J., Raatikainen, M. (eds.) PROFES 2014. LNCS, vol. 8892, pp. 273–276. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-13835-0_20

12. Jørgensen, M.: Myths and over-simplifications in software engineering. Lect. Notes Softw.
Eng. 1(1), 7–11 (2013)

13. Jørgensen, M., Moløkken-Østvold, K.: How large are software cost overruns? A review of
the 1994 CHAOS report. Inf. Softw. Technol. 48(4), 297–301 (2006)

14. Jørgensen, M.: A survey on the characteristics of projects with success in delivering client
benefits. Inf. Softw. Technol. 78, 83–94 (2016)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

190 M. Jørgensen

http://dx.doi.org/10.1007/978-3-540-73101-6_7
http://dx.doi.org/10.1007/978-3-540-73101-6_7
http://dx.doi.org/10.1007/978-3-319-13835-0_20
http://creativecommons.org/licenses/by/4.0/

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Looking back on previous estimation error as a
method to improve the uncertainty assessment of

benefits and costs of software development projects

Magne Jørgensen
Simula Metropolitan,

Center for Digital Engineering
Oslo, Norway

magnej@simula.no

Abstract— Knowing the uncertainty of estimates of
benefits and costs is useful when planning, budgeting and
pricing projects. The traditional method for assessing such
uncertainty is based on prediction intervals, e.g., asking for
minimum and maximum values believed to be 90% likely to
include the actual outcome. Studies report that the
traditional method typically results in too narrow intervals
and intervals that are too symmetric around the estimated
most likely outcome when compared with the actual
uncertainty of outcomes. We examine whether an
uncertainty assessment method based on looking back on the
previous estimation error of similar projects leads to wider
and less symmetric prediction intervals. Sixty software
professionals, with experience from estimating software
project costs and benefits, were randomly divided into a
group with a traditional or a group with a looking back-
based uncertainty assessment method. We found that those
using the looking back-based method had much wider
prediction intervals for both costs and benefits. The software
professionals of both groups provided uncertainty
assessment values suggesting a left-skewed distribution for
benefits and a right-skewed distribution for cost, but with
much more skew among those using the looking back-based
method. We argue that a looking back-based method is
promising for improved realism in uncertainty assessment of
benefits and costs of software development projects.

Keywords—uncertainty assessment, software benefits and
cost, controlled experiment

I. INTRODUCTION
There is no shortage of studies of human judgement

documenting that people will give prediction intervals that
are too narrow and too symmetric when asked to use the
traditional uncertainty assessment method, i.e., the method
based on giving minimum and maximum values with,
typically, 90% confidence in including the actual value [2,
14, 18]. A typical result demonstrating the lack of
correspondence between the confidence level and rate of
including the actual effort (the hit rate) in the prediction
interval is the one in [11], where software professionals
giving traditional minimum–maximum intervals included
the actual effort only 20–40% of the time, in spite of being
instructed to be, typically, 90% sure to include the actual
effort. Even after extensive feedback and training, the
confidence level is typically much higher than the hit rate
[5]. While knowledge of the problems with the traditional
method for eliciting effort uncertainty intervals is not new,
in particular when used in situations with high uncertainty,
it is in common use and promoted, e.g., in the context of
the PERT (Program Evaluation and Review Technique)

tool and as part of the PMBOK (Project Management
Book of Knowledge) [12, 16]. A possible reason for the
promotion and widespread use of this method, frequently
known as three-point estimates, is that the statistical theory
behind it is sound, there are no clear alternatives, and there
is typically little on-the-job feedback to show that the
judgment-based input to the method frequently is strongly
biased [11]. Unfortunate consequences of too narrow and
symmetric uncertainty intervals are, amongst others,
unrealistic cost-benefits analyses and too low budgets.

In previous papers we suggested and empirically
evaluated an alternative method, based on the assumption
that the distribution of the estimation accuracy of earlier,
similar, software projects can be used to predict the
uncertainty of new projects [6, 8-10]. Assume, for
example, that a software professional wants to assess the
uncertainty of a project that has been estimated to cost
around 1 million USD. He or she looks back on estimation
error experience from similar projects (memory-based or
based on actual estimation error measurement) and reports
that only 20% of them cost less than the estimated cost and
around 10% cost more than twice the estimated cost. The
software professional may be asked to add more empirical
error data to provide the full empirical error distribution,
but even these two data points (p20 = 1 mill. USD and p90
= 2 mill. USD) are sufficient to establish an uncertainty
distribution, given the selection of a proper non-symmetric
distribution belonging to the location-scale family [3, 13],
e.g., a log-normal or gamma distribution. Figure 1 displays
the log-normal distribution based on the above two
estimation error data points. The cumulative error
distribution is displayed in Figure 2. Figure 2 shows, for
example, that the p50 (the value it is 50% likely to
overrun) is around 1.3 mill. USD.

The results when using this alternative uncertainty
assessment method have been good, suggesting increased
realism compared to the traditional method [6, 17].

This paper extends our previous evaluations of the
outlined alternative method by adding an analysis of the
uncertainty assessment of benefits and of the benefits to
costs ratio (return on investment) of software projects. In
addition, the paper, compared to the previous papers, has a
more explicit focus on differences in the skewness of the
distributions provided by the traditional and the alternative
uncertainty assessment method.

Fig. 1. Probability density cost distribution (log-normal)

Fig. 2. Cumulative cost distribution (log-normal)

The hypotheses to be tested are the following:

H1: Those asked to look back (using the alternative
method) will give wider and more left-skewed uncertainty
intervals for software development benefits.

H2: Those asked to look back (using the alternative
method) will give wider and more right-skewed
uncertainty intervals for software development costs.

H3: The uncertainty assessment of those asked to look
back (using the alternative method) will result in a lower
benefits-to-costs ratio (return on investment) for software
development costs.

The motivation for H1 and H2 is that we expect that
software professionals instructed to look back will be
reminded that much higher benefits and much lower costs
than, respectively, the estimated benefits and costs are rare.
Much lower benefits and much lower costs than estimated
are, on the other hand, not uncommon. H3 will be true if
H1 and H2 are true, but it is nevertheless interesting to
examine on its own. Our expectation is that the difference
in the expected benefits-to-costs ratio between those using
the traditional and the alternative uncertainty assessment
method is substantial.

II. METHOD
The participants were software professionals, mainly

managers and projects leaders, attending a seminar on
benefits management. The software professionals were
first instructed to indicate their level of experience in

benefits and costs estimation on a scale from 0 (none) to 5
(very high). Of the total of 65 responses received, from
around 100 seminar participants, five had no experience
with either costs or benefits management. These were
removed from the analysis, leaving 60 responses for our
analysis. The median experience level of the remaining
participants was 3 (medium high) for benefits and 3 for
costs estimation.

Following their responses on their experience level, the
participants read the following description of a scenario
based on a real-life software project (translated from
Norwegian):

Digital solution for planning applications for
construction work – uncertainty of costs and benefits

The municipal council of Oslo has decided to develop an
IT system that will ease the planning applications of the
non-professional and professional actors of the
municipality desiring to build houses and other
constructions.

The planning applications should, after secure login and
selection of the relevant application type, be pre-registered
with all the information the municipality already has about
the person, company or property the application concerns.
The field of the application where information about the
construction work is to be provided should include links to
the relevant regulations.

The user’s application input will be checked automatically
(where possible) with respect to the regulation adherence
and correctness of the application type. Warnings should
be provided if any non-adherences are found. The users
should have the opportunity to download relevant maps,
and have the functionality to put their own constructions
on that map. All application information, e.g., feedback
and decisions from the municipality, should be done
through the software system. Status updates should in
addition be given using secure email.

The estimate of the expected benefits – given by
experienced people at the municipality – is that the
municipality will save 4 man-years per year when the
system has been implemented. This will mainly be a
consequence of the higher quality of the planning
applications received and the need for fewer iterations
before an application can be approved. In addition, it is
expected that the users will save about 10 man-years each
year through a simplified application process. Together
with other quantitative benefits (summed over 10 years)
the expected total benefit is expected to be around 120
million Norwegian Kroner. Non-quantitative benefits such
as happier users and less illegal construction work are not
included in the calculations.

The estimate of the expected costs – given by an external
provider with relevant experience, is estimated to be
around 65 million Norwegian Kroner.

The above information is clearly not sufficient to say much
about the realism of the benefits and costs estimates. Try,
nevertheless, based on your own experience and other
relevant knowledge with similar projects, to assess the
uncertainty of the estimates of the benefits and of the costs.

0 1000000 2000000 3000000

0 %

20 %

40 %

60 %

80 %

100 %

0 1000000 2000000 3000000

The participants were randomly divided into two
groups: traditional and alternative uncertainty assessment.
These two groups had different instructions about the
format of their uncertainty assessments.

Traditional Group (minimum–maximum values)

Uncertainty of the benefits estimate

Based on my experience with similar projects, I believe
that the actual benefits (with 90% certainty) will be in the
interval: ________ (minimum) and ________ (maximum)
Norwegian Kroner.

Uncertainty of the costs estimate

Based on my experience with similar projects, I believe
that the actual costs (with 90% certainty) will be in the
interval: ________ (minimum) and ________ (maximum)
Norwegian Kroner.

Alternative Group (looking back on previous benefits
and costs estimation error)

Uncertainty of the benefits estimate

Input the proportion of similar (they do not have to be very
similar), already completed, software projects for which
you believe the benefits achieved were:

Less than half of the estimated benefits: _____%
(Proportion of projects: 0%=none … 100%=all)

Less than the estimated benefits: _____%
(Proportion of projects: 0%=none … 100%=all)

More than twice the estimated benefits: _____%
(Proportion of projects: 0%=none … 100%=all)

Uncertainty of the costs estimate

Input the proportion of similar (they do not have to be very
similar), already completed, software projects for which
you believe the actual costs were:

More than twice the estimated costs: _____% (Proportion
of projects: 0%=none … 100%=all)

More than the estimated costs: _____% (Proportion
of projects: 0%=none … 100%=all)

Less than half the estimated costs: _____% (Proportion
of projects: 0%=none … 100%=all)

The key difference between the two groups was that
the first group used the traditional minimum–maximum
uncertainty assessment method, with a given confidence
level (here 90%), while the second were asked to assess
the actual uncertainty (as indicated by their estimation
error) of previous software projects. We suspected, as
described in Section 1, that the traditional method would
lead to the assessment of substantially less and more
symmetric uncertainty than the uncertainty assessment
method based on those looking back on the error, and
implicitly the uncertainty, of similar, previously
completed, software projects.

III. RESULTS
The assessments of the two groups differed greatly,

both in terms of degree of uncertainty and in the amount of
right- and left-skewedness of the implied uncertainty
distributions. Tables I and , together with Figures 3–6
display key characteristics of the uncertainty assessments.
For readability purposes, we translated the original
uncertainty values into percentages of the estimates, i.e., in
percent of the benefits estimate of 120 mill. Norwegian
Kroner and of the costs estimate of 65 mill. Norwegian
Kroner.

We have, for simplicity, assumed that a 90%
confidence effort interval implies that the minimum is
interpreted as the 5% level (p5), where it is only 5% likely
that the actual value will be equal or less, and that the
maximum is interpreted as the 95% level (p95), where it is
95% likely that the actual value will be equal or less. This
is a common, although not necessary, interpretation of a
90% confidence effort prediction interval.

The interval width is measured as: (p95-p5)/estimate,
where p5 and p95 are the values directly provided by the
software professionals in the traditional method group, and
the fitted values, assuming a PERT-distribution (using the
tool @risk), for those in the alternative method group. The
choice of a PERT-distribution to calculate the p5 and p95
for those in the alternative method group is based on the
fact that this is a method frequently used in effort
uncertainty assessment situations and that it enables us to
compare the same pX-values for the two uncertainty
assessment methods. The estimates are the same for the
two groups, i.e., 120 mill. Norwegian Kroner for the
benefits and 65 mill. Norwegian Kroner for the costs.

The interval skew is measured as: distribution
mean/estimate, where the distribution mean is calculated
using the PERT-formula: (Minimum + 4 x Estimate +
Maximum). The minimum and maximum values are, as
before, those provided by the software professionals in the
traditional group and the fitted ones in the alternative
uncertainty assessment group. The PERT-formula assumes
that the Estimate is the mode (the most likely value). While
this was not clear from the scenario description (Section
2), the intended interpretation of the benefits and costs
estimate was not described, and it makes no large
difference for the comparison of the two approaches. A
skew-value larger than one, i.e., when the mean (expected
value) of the distribution is higher than the estimate,
indicates a right-skewed distribution, while a skew-value
less than one indicates a left-skewed distribution. Notice
that our measure of interval skew deviates from the
traditional measure of distribution skew based on the
difference between mode and mean.

TABLE I. TRADITIONAL UNCERTAINTY ASSESSMENT
(MEDIAN VALUES)

Uncertainty
assessment Benefits Cost

Minimum (p5) 67% of estimate 81% of estimate
Maximum
(p95)

125% of estimate 154% of estimate

Interval width 0.54 0.69

Right-/left-
skew

0.95 (weak left-skew) 1.08 (weak right-skew)

TABLE II. ALTERNATIVE UNCERTAINTY ASSESSMENT
(MEDIAN VALUES)

Uncertainty assessment Benefits Cost
Probability of actual value
less than half of estimate

30% 1%

Probability of actual value
less than estimate

65% 25%
(=100% - 75%)

Probability of actual value
more than estimate

35%
(=100% - 65%)

75%

Probability of actual value
more than twice the estimate

5% 30%

Fitted minimum (p5) 22% 61%

Fitted maximum (p95) 200% 325%

Interval width 1.78 2.64

Right-/left-skew 0.89 (weak left-
skew)

1.66 (strong
right-skew)

Figures 3–6 display the benefits and costs uncertainty
distributions of the groups. The uncertainty distributions
are based on fitting the distribution to the three values p5,
estimate (interpreted as the mode) and p95. The values are
transformed so that: i) The value 1.0 is the estimated
benefits in Figures 1 and 3, and the estimated costs in
Figures 2 and 4, and ii) The values are in percentage of the
estimate, e.g., the value 1.4 denotes a value 140% of the
estimate. For each graph, the p5 (minimum) and p95
(maximum) values are indicated.

Fig. 3. Benefits distribution for traditional uncertainty assessment

Fig. 4. Costs distribution for traditional uncertainty assessment

Fig. 5. Benefits distribution for alternative uncertainty assessment

Fig. 6. Costs distribution for alternative uncertainty assessment

As can be seen from the values at the x-axes of the
graphs and in the tables, there is a substantial difference in
the assessed uncertainty between the traditional and the
alternative method. Both H1, wider distributions, and H2,
more left-skewed benefits distribution and, more right-
skewed cost-distribution, when using the alternative
uncertainty assessment method are consequently
supported.

IV. DISCUSSION

A. Which method led to the most realistic assessments?
A key question is which of the uncertainty approaches

led to the most realistic assessment. While, in this case, the
answer to this would require that we knew the outcome of
the (still on-going) project1, we argue that there are at least
two reasons to believe that the alternative approach gave
the most realistic assessments:

• Looking back on previous experiences, sometimes
called the use of “reference class” estimation or
“analogy”-based estimation, when estimating software
costs and benefits is documented to give more realism
[4, 7]. While this has mainly been documented for cost
estimates, we find it reasonable to assume that a

1 In fact, we would not know the realism of the uncertainty assessments
even if we knew the outcome of the project. In order to know the realism
of the uncertainty assessments we would need many uncertainty
assessments and actual outcomes, and to compare the confidence level or
probability with the actual hit rate. After all, being 90% confident means
that one will be wrong in 10% of the cases.

similar realism improvement will be present in
uncertainty assessment contexts.

• Empirical data suggest that the uncertainty of a project
of the type used as the case in this study is high.
Software development projects in Norway were, for
example, found to have an average costs overrun of
67% for projects with a public client [15]. Other
surveys, for example [1], find that costs overrun
distributions are strongly right-skewed, with 41% of
data management projects having a costs overrun of
more than 25%, and many of them 2-3 times more.

A further argument in favour of the alternative
uncertainty assessment method is that the assessments
were based on the respondents’ actual experiences about
typical estimation error and bias, e.g. how typical over-
estimating the benefits and under-estimating the costs of
similar projects were. The respondents were randomly
divided into groups, which implies that the group using the
traditional method probably is likely to have had, as a
group, about the same experience regarding costs and
benefit estimation error. In other words, those using the
traditional method assessed the uncertainty to be much
lower than what they had probably experienced in similar
projects prior to this one. As far as we can judge, there was
nothing in the project description that indicates a
substantially lower complexity or risk of this project
compared to other governmental projects of similar size
and type.

B. Implications for benefits-to-costs ratio (test of H3)
An interesting implication of our results is that the

benefits-to-costs ratio (return on investment) analysis
including uncertainty would give very different values for
the two approaches.

As a benchmark value, we start with the non-stochastic
(statistically naïve) benefits-to-cost analysis, i.e., without
taking uncertainty into consideration. Here we use the
estimated benefits and costs and get a return on investment
of 120 mill. Norwegian Kroner / 65 mill. Norwegian
Kroner = 1.85, i.e., the expected benefits-to-costs ratio is
strongly positive. Very often, as far as we have
experienced, this non-stochastic value is the one used
when making decisions about whether to start a software
project or not.

Then we use at the uncertainty assessment of those in
the traditional group, using the benefit and costs
distributions based on the median assessments of p5 and
p95, the PERT-distribution and a Monte Carlo simulation
to simulate the ratio of benefits to costs (10,000
simulations). We then get an expected return of investment
of 1.6 (see Figure 7), i.e., the expected benefits-to-costs
ratio is still strongly positive, although slightly less than
with the non-stochastic calculations.

Finally, we use the uncertainty assessment of those in
the alternative group, using the median probability
assessments (PERT-fitted p5 and p95) and simulate the
benefits-to-costs ratio using Monte Carlo simulation
(10,000 simulations). Now the expected benefits-to-costs
ratio is as low as 1.2, see Fig8. In this case, the probability
of making no profit at all is as high as 40%. In other words,
using the alternative, arguably more realistic, uncertainty

analysis makes it much less obvious that the project is
worth starting.

Fig. 7. Benefit / Costs – traditional uncertainty assessment

Fig. 8. Benefits / Costs – alternative uncertainty assessment

C. Limitations
There are several limitations to take into consideration

when interpreting and using the results reported in this
experiment. While the results are consistent with previous
results on the traditional uncertainty assessment approach,
i.e., that it leads to too narrow and symmetric intervals, we
cannot exclude that those using the traditional intervals had
the most accurate assessment of the underlying
uncertainty. This can only be assessed when aggregating
assessments and outcomes over many projects. What we
can be confident about, however, is that those using the
traditional uncertainty assessment were much more
optimistic about the uncertainty than would be warranted
by similar projects. We interpret this as a high likelihood
of those in the traditional group being over-optimistic
about the uncertainty.

The generalizability of the results to other project
contexts and other software professionals is to a large
extent unknown, as neither the project nor the participants
were selected to represent a particular population. When
looking at the roles, experience level and organizations of
the participants (using the list of participants of the
seminar), however, we see that they represent relevant
roles. They were, with a few exceptions, software
managers on the client side or project managers on the

provider side. The fact that they spent time visiting a
seminar on benefits management, and had previous
experience in estimating benefits and costs, indicates that
they may have been more than averagely interested and,
perhaps, more than average skilled in this topic.

We have assumed an underlying PERT-distribution for
our analyses. The uncertainty values and results are
affected by this choice. We evaluated the use of log-
normal and gamma distribution, which gave similar
results, i.e., there is little reason to believe that the choice
of underlying uncertainty distributions had a large impact
on the result.

V. CONCLUSIONS
Software professionals asked to give benefits and costs

uncertainty assessments based on the estimation error they
recalled having experienced on similar software projects
(termed the alternative method) gave wider uncertainty
intervals than those using the traditional minimum–
maximum 90% confidence intervals. It also led to more
left-skewed benefits distributions and more right-skewed
costs distributions. The difference in assessment of
benefits and costs uncertainty led to a substantial
difference in the assessment of the profitability of the
project, i.e., the benefits-to-costs ratios were highly
favorable using the traditional method while much less so
for the alternative method.

Assuming that the recalled projects were similar in
terms of uncertainty to the one to be assessed, the
alternative method is, we argue, likely to have led to more
realistic uncertainty assessment. Previous empirical results
on the use of reference-class and analogy-based, i.e.,
looking-back based, estimation models for software
development effort, support the suggestion that looking
back on previous experience-based methods leads to more
realistic judgments.

We plan to conduct more studies comparing the
traditional and different variants of the alternative
uncertainty assessment method, where we will vary the
elicitation format and, preferably, compare with the actual
benefits achieved and costs spent.

REFERENCES
[1] Budzier, A. and B. Flyvbjerg, Overspend? Late?

Failure? What the data say about IT project risk
in the public sector. Commonwealth Governance
Handbook, 2012. 13: p. 145-157.

[2] Connolly, T. and D. Dean, Decomposed versus
holistic estimates of effort required for software
writing tasks. Management Science, 1997. 43(7):
p. 1029-1045.

[3] Cook, J.D., Determining distribution parameters
from quantiles. 2010, UT MD Anderson Cancer
Center Department of Biostatistics Working
Paper Series.

[4] Flyvbjerg, B., Curbing optimism bias and
strategic misrepresentation in planning:
Reference class forecasting in practice. European
Planning Studies, 2008. 16(1): p. 3-21.

[5] Gruschke, T.M. and M. Jorgensen, The role of
outcome feedback in improving the uncertainty

assessment of software development effort
estimates. Acm Transactions on Software
Engineering and Methodology, 2008. 17(4).

[6] Jørgensen, M., Realism in assessment of effort
estimation uncertainty: It matters how you ask.
IEEE Transactions on Software Engineering,
2004. 30(4): p. 209-217.

[7] Jørgensen, M., Top-down and bottom-up expert
estimation of software development effort.
Information and Software Technology, 2004.
46(1): p. 3-16.

[8] Jørgensen, M., The Ignorance of Confidence
Levels in Minimum-Maximum Software
Development Effort Intervals. Lecture Notes on
Software Engineering, 2014. 2(4).

[9] Jørgensen, M. and D.I.K. Sjøberg, An effort
prediction interval approach based on the
empirical distribution of previous estimation
accuracy. Information and Software Technology,
2003. 45(3): p. 123-136.

[10] Jørgensen, M. and K.H. Teigen. Uncertainty
Intervals versus Interval Uncertainty: An
Alternative Method for Eliciting Effort
Prediction Intervals in Software Development
Projects. in International Conference on Project
Management (ProMAC). 2002. Singapore.

[11] Jørgensen, M., K.H. Teigen, and K. Moløkken,
Better sure than safe? Over-confidence in
judgement based software development effort
prediction intervals. Journal of Systems and
Software, 2004. 70(1-2): p. 79-93.

[12] Kerzner, H., Project Management: A Systems
Approach to Planning, Scheduling, and
Controlling. 2003: John Wiley & Sons.

[13] Little, T., Schedule estimation and uncertainty
surrounding the cone of uncertainty. Software,
IEEE, 2006. 23(3): p. 48-54.

[14] McKenzie, C.R.M., M. Liersch, and I. Yaniv,
Overconfidence in interval estimates: What does
expertise buy you? Organizational Behavior and
Human Decision Processes, 2008. 107: p. 179-
191.

[15] Moløkken, K., M. Jørgensen, S.S. Tanilkan, H.
Gallis, A.C. Lien, and S.E. Hove, Project
Estimation in the Norwegian Software Industry-A
Summary. . 2004: Simula Research Laboratory,
3.

[16] PMI, Guide to the Project Management Body of
Knowledge (PMBOK(r) Guide)-Sixth Edition.
2017.

[17] Winman, A., P. Hanson, and P. Jusling,
Subjective probability intervals: how to reduce
overconfidence by interval evaluation. Journal of
experimental psychology: learning, memory and
cognition, 2004. 30(6): p. 1167-1175.

[18] Yaniv, I. and D.P. Foster, Precision and
accuracy of judgmental estimation. Journal of
Behavioral Decision Making, 1997. 10(1): p. 21-
32.

Relations	between	Project	Size,	
Agile	Practices	and	Successful	
Software	Development	

Magne Jørgensen

Simula Metropolitan, Oslo, Norway

ABSTRACT. The use of agile methods in the execution of large-scale
software development is increasing. To find out more about the effect of
this on project performance, information was collected about 196
Norwegian IT-projects. Increased project size was associated with
decreased project performance for both agile and non-agile projects, but
the projects using agile methods had better performance than the non-agile
projects for all examined project size categories. Flexible scope, frequent
deliveries to production, a high degree of requirement changes and more
competent providers are candidates to explain the better performance of
agile projects.

Keywords: agile methods, project performance, project characteristics

A traditional response to increased size and complexity of work is to implement more
planning and management formalism [1]. Agile software development methods, on the
other hand, try to remove or reduce much of the traditional project management
formalism. Does this mean that agile, as indicated in [3] mainly work for smaller
projects? Or do agile methods work well for larger projects as suggested in [2, 5]. The
available empirical evidence is mixed and does not allow strong claims. In addition, the
evidence does not give much insight into when, if at all, agile methods tend to work well
for large projects. This shortage of empirical evidence motivated the survey reported in
this paper, aiming at answering the following two questions:

1) How well do larger agile software projects perform compared to smaller projects
and non-agile projects?

2) Which agile practices and characteristics are connected with better performance?

The Survey

Respondents and data collection

The survey participants were Norwegian software professionals visiting three different
seminars on project management in 2016 and 2017. The software professionals provided
information about their last completed projects. 216 responses were received. After
removing responses without the minimum information needed for the analysis, i.e. the
budget size category, the development method and the perceived performance of the
project, there were 196 unique responses remaining. The project information was given
anonymously, in Norwegian, using the survey tool Qualtrics. There was a “don’t know”
option for all project information items to ensure that the respondents only answered
when they felt they had sufficient knowledge.

The software professionals had on average 13 years of experience, with 70% having 8 or
more years. 69% of the respondents were from the provider side and 31% were from the
client side. 71% had technical roles in the reported project, e.g. architects or developers,
and 29% had managerial roles, e.g. product owners, team leaders and project managers.

Project characteristics

The project characteristics requested from the participants is described in Table 1. The
included variables are those that were found to distinguish between successful and failed
software projects in an earlier survey [4]. To avoid too few observations for some
categories the analyzed category “high” (“low”) includes both “very high” (“very low”)
and “high” (“low”) responses.

Table 1. Project characteristics*
Characteristic Categories
Budget size (used as

measure of project size)1

Small (<1 mill Euro)

Medium (1-10 mill Euro)

Large (>10 mill Euro)

Development method2 Agile

Non-agile

Requirement volatility3 High (>30% changes)

Low (<=30% changes)

Perceived flexibility of scope High

Low

Perceived detail of upfront

project plan

High

Low

Perceived detail of upfront

requirement specification

High

Low

Frequency of deliveries to

production4

>4 per year

<= 4 per year

Contract type Time & materials

Fixed price

Perceived provider

competence

High

Low

Perceived client competence High

Low
*: The full questionnaire is available to interested readers upon request.
1: The budget size categories small, medium and large are the same as those found to separate the effect of agile
practices in [5].
2: There is no commonly accepted definition of what it means to work agile. I used the respondents’ own perception of
whether they worked agile or not in the first analysis and added analyses of the effect of different agile practices and
characteristics in the second analysis.
3: The threshold of 30% is based on what was closest to the median level of perceived amount of requirement change
of the projects.
4: The original categories were “none”, “1-4” and “more than 4”, where the two first were joined. Notice that even non-
agile projects, e.g., incremental or timeboxing-based projects, may have deliveries to production during the project
execution.

Project performance

After describing characteristics of the project, each participant assessed the performance
of their last completed project, as he/she perceived it, using the scale: very successful –
successful – acceptable – problematic – very problematic for each of the success
dimensions: client benefits (value), cost control, time control, productivity and technical
quality.

To define the project’s overall performance, we used the following categorization:
Successful: Successful or better on all five success dimensions,

Acceptable: Acceptable or better on all five success dimensions

Failed: Very problematic on at least one success dimension.

Data collection challenges

Different participants may be involved in the same projects, leading to the possibility of
duplicate projects in our data set. The variance in organizations of the participants, as
analyzed from the list of seminar participants and the typically large size of their
organizations, indicates that the number of duplicates, if any, is very low.

Participants from the client and the provider side, as well as participants in different roles,
may have different knowledge and perceptions of a project’s performance. While this
subjectivity may affect the accuracy of the reported success and failure rates, it is less
likely to change the direction of the connection between development methods, project
size and project performance.

An examination of the list of participants shows that the majority of them belong to or
worked for large organizations with mainly administrative software applications.
Consequently, the results may mainly be valid within this context.

Results

In total, 16% of the software projects were categorized as successful, 52% as acceptable
and 7% as failed. The small and medium sized projects had the best performance with
15% and 22% categorized as successful, 55% and 50% as acceptable, and 7% and 4% as
failed, respectively. The larger projects had 5% categorized as successful, 41% as
acceptable and 14% as failed. The decrease in project performance with increased project
size corresponds to findings in other studies, e.g., [6].

Seventy-four percent of the projects were categorized as agile. These projects, see Table
2, had better average success rate than the non-agile projects for all three size categories.
Figure 1 displays this interaction effect for projects with acceptable project performance.
An analysis using a general linear model (GLM) with the variable development method
(agile and non-agile) nested into the variable budget size (small, medium and large) gives
a that the difference in proportion acceptable projects is statistically significant, one-sided
tests, for small (p<0.01) and medium (p=0.03) sized projects, but not, due to the lower
number of observations, for large sized projects (p=0.12).

Table 2. Relationship between budget size category, development method and project
performance*
Project

performance

Development

method

Small (n=120) Medium (n=54) Large (n=22)

Successful (n=31) Agile 19% 24% 7%

 Non-agile 0% 19% 0%

Acceptable

(n=102)

Agile 65% 58% 50%

 Non-agile 19% 31% 25%

Failed (n=13) Agile 2% 3% 14%

 Non-agile 23% 6% 13%
* The percentages are the proportion of successful, acceptable and failed projects for projects same budget size
category and same development method.

Figure 1. Interaction plot of projects with acceptable performance

The analysis of practices and context characteristics (factors) potentially connected with
better performance of agile projects was completed as follows. First, the factors more
frequently observed in agile than in non-agile projects were identified through a chi-
square analysis. Due to more frequent use these factors may explain the better
performance of agile projects even if they have a similar, positive effect on non-agile
projects. Second, the connection between all factors and acceptable project performance
(the largest performance category) was analyzed.

The factors associated with a statistically significant (here set as p<0.05) higher
proportion of agile projects were high requirement volatility (50% of agile projects and
33% of non-agile projects had more than 30% requirement changes, p=0.04), frequent
deliveries to production (68% of agile projects and 32% of non-agile projects had more
than four deliveries to production per year, p<0.01) and flexible scope (79% of agile
projects and 47% of non-agile projects had a perceived high degree of scope flexibility).
There were no statistically significant differences in proportion of projects with detail of
project plan (60% of agile and 53% of non-agile projects were perceived to have little
detail in project plans, p=0.75), detail of requirement specification (55% of agile and
54% of non-agile projects were perceived to have little detail in requirement
specification, p=0.96), and contract type (51% of agile and 58% of non-agile used fixed
price contracts, p=0.53).

Table 3 displays the results for the proportion of projects with acceptable performance for
the analyzed factors. Notice that the sum of observations is lower than the full dataset of
196 projects due to “don’t know” answers.

Table 3. Proportion projects with acceptable performance*
Factor Category Agile (n=146) Non-agile (n=50)

Requirement

volatility

High (n=80) 58% 13%

Low (n=97) 61% 29%

Delivery

frequency

>4 per year (n=99) 70% 25%

<=4 per year (n=60) 49% 21%

Scope

flexibility

High (n=71) 85% 33%

Low (n=26) 50% 40%

Detail of

project plan

High (n=59) 67% 18%

Low (n=81) 53% 21%

Detail of req.

spec.

High (n=63) 55% 13%

Low (n=76) 61% 26%

Contract type Fixed price (n=66) 60% 17%

 Time & materials

(n=60)

60% 23%

* The percentages are the proportion of acceptable projects for projects with same factor category and same
development method. There are too few observations (low statistical power) for some of the combinations of categories
to conduct meaningful tests of statistical significance for the interactions in Table 3. The differences should
consequently be interpreted as indications of relationships, not as strong evidence.

The results in Table 3 suggest that experiencing high requirement volatility did not
greatly affect the proportion of acceptable agile projects, while the proportion of
acceptable non-agile projects decreased from 29% to 13%. Frequent delivery to
production seems to have had a much stronger positive connection with better
performance for agile than for non-agile projects. This practice was also more common
among agile projects and may therefore contribute to a better performance of agile
projects both by being more frequently used and by having a stronger positive
connection. Higher scope flexibility was connected with much higher proportion of
acceptable performance for agile projects, and a lower proportion for non-agile projects.
The factors including detail of project plan, detail of requirement specification and
contract type did not contribute much to explaining an improved performance of agile
projects.

Table 4 suggests that as the project size increased from small to medium/large a high
degree of requirement changes further increased the superior performance of the agile
projects. A higher delivery frequency was associated with larger increase in acceptable
agile than in acceptable non-agile projects. Similarly, higher flexibility of scope was
associated with increased performance of small agile and decreased performance of small
non-agile projects.

Table 4. Proportion projects with acceptable performance, per size category*
Factor Category Agile Non-agile

 Small

(n=94)

Medium/large

(n=52)

Small

(n=26)

Medium/large

(n=24)

Requirement

volatility

High (n=80) 62% 54% 13% 14%

Low (n=97) 65% 47% 20% 38%

Delivery

frequency

High (n=99) 73% 65% - 38%

Low (n=60) 54% 41% 13% 27%

Scope

flexibility

High (n=71) 86% 84% 14% -

 Low (n=26) 55% 40% 57% -
* The percentages are the proportion of acceptable projects for projects with same factor category, budget size category
and development method. There are too few observations (low statistical power) in some of the categories to conduct
meaningful tests of statistical significance for the interactions in Table 4. The differences should consequently be
interpreted as indications of relationships, not as strong evidence. The fields with “-“ have fewer than five observations,
due to missing data about a project or few occurrences, and the proportions were not calculated.

If agile projects attract more competent providers or clients, this may contribute to the
difference between agile and non-agile projects. An analysis of the project data
demonstrated that that the agile software projects were indeed perceived to have more
competent clients and providers (Chi-square test of independence gives p=0.02 and
p=0.01, respectively). A binary logistic regression model with the elements client
competence (high vs. low), provider competence (high vs low), development method
(agile vs non-agile), requirement volatility (high vs. low), delivery frequency (high vs.
low) and scope flexibility (high vs low), using the performance measure acceptable
(1=acceptable, 0=not acceptable) as the dependent variable gives a 5.7 and 2.4 times
higher likelihood of observing an acceptable project when having a high compared to a
low or medium competent provider (p=0.046) and client (p=0.27, not statistically
significant), respectively. More studies are needed to analyse how client and provider
competence interact with agile practices and contexts to explain differences in project
performance.

Conclusions

The survey of 196 Norwegian software projects provides empirical support for the use of
agile methods on larger as well as smaller software projects, especially when including
flexible scope and frequent delivery to production, and in contexts with high requirement
changes. A contributing factor seems to be that agile projects tend to have more
competent providers.

References

[1] Child, J., Predicting and understanding organization structure. Administrative
Science Quarterly, 1973. 18(2): p. 168-185.

[2] Dingsøyr, T., N.B. Moe, T.E. Fægri, and E.A. Seim, Exploring software
development at the very large-scale: a revelatory case study and research agenda
for agile method adaptation. Empirical Software Engineering, 2018. 23(1): p. 1-
31.

[3] Dybå, T. and T. Dingsøyr, Empirical studies of agile software development: A
systematic review. Information and software technology, 2008. 50(9): p. 833-859.

[4] Jørgensen, M., A survey on the characteristics of projects with success in
delivering client benefits. Information and Software Technology, 2016. 78: p. 83-
94.

[5] Jørgensen, M. Do Agile Methods Work for Large Software Projects? in
International Conference on Agile Software Development. 2018. Porto, Portugal:
Springer.

[6] Sauer, C., A. Gemino, and B.H. Reich, The impact of size and volatility on IT
project performance. Communications of the ACM, 2007. 50(11): p. 79-84.

Biography: Magne Jørgensen is professor in software engineering at the University of
Oslo and chief research scientist at Simula Metropolitan. He has extensive industry
experience as consultant and manager and currently serves at the Norwegian
digitalisation board where he advises governmental software projects. His research
interests include project management, evidence-based software engineering and expert
judgment. His recent book on effort estimation can be downloaded for free
from: tinyurl.com/timepredictions.

VEDLEGG 2

25/5/18

1

When	is	agile	better?	
How	the	use	of	agile	and	autonomous	teams
affect	success	differently	in	different	contexts	

(and	other	results)

Magne	Jørgensen
Simula	Metropolitan
Center	for	Digital	

Engineering

We	analysed	the	connections	between	
software	project	outcome	and	the	

following	factors:
• Development method
• Contract type
• Sourcing strategy
• Requirement volatility
• Project size
• Benefits management
• And a little bit about the use of autonomous teams

Philosophy: Success and failure patterns, not factors

25/5/18

2

Studies

• Four surveys with participants on IT management
seminars
– Asked to give information about their last, completed

(or cancelled) project
– 60-150 participants in each
– From both client and provider side and many roles

• An interview-based study of 32 governmental
software development projects

• Project data from an offshoring marketplace
– More than 400.000 projects/tasks
– Most of them very small

In	spite	of	all	the	challenges,	our	
empirical	results	may	have	value.

Weak	evidence,	as	long	as	it	is	not	
misleading,	is	often	better	than	no	

evidence.

25/5/18

3

SINCE	THIS	WORKSHOP	IS	ABOUT	
AUTONOMOUS	TEAMS,	LETS	START	

WITH	THAT	…

”THE	TEAM	HAS	SUBSTANTIAL	FREEDOM	IN	SELECTING,	
SCHEDULING,	PROCESSING	AND/ORCOMPLETING	TASKS”

Autonomous	teams	are	useful	for	
many	types	of	tasks,	and	is	not	a	new	

way	of	collaborative	effort

25/5/18

4

It	may	not	fit	all	types	of	tasks.	
Here:	The	organization	of	pyramid	construction	(Giza)

Conway’s law
(extended):

The	structure of the
organization affects
the product,	and	
what is	produced
affects the
organizational
structure.

Building a	pyramid
with autonomous
team	(more	than
10.000	workers),	no
clear architecture,	
no standarized work
processes and	
detailed plans	
would be	risky and	
probably inefficient.

IS	SOFTWARE	DEVELOPMENT	MORE	
LIKE	GAME	HUNTING	IN	TEAMS	OR	

PYRAMID	CONSTRUCTION?
(DOES	SOFTWARE	DEVELOPMENT	USUALLY	BENEFIT	
FROM	THE	USE	OF	AUTONOMOUS	TEAMS?)

I	GUESS	YOU	ALREADY	THINK	YOU	KNOW	THE	ANSWER	
ON	THIS,	BUT	LET’S	GET	EMPIRICAL.	NEVER	TRUST	CLAIMS	
WITHOUT	EMPIRICAL	DATA.

25/5/18

5

Does	it	for	example	end	up	with	(autonomous)	
teams	fighting	each	others	(as	in	a	rugby	scrum)

Survey	design	... (unpublished)

• Survey of 101 software projects (their last project, both provider and client
respondents)

• ”Do you consider the development team(s) of the project to have been
”self-organized”?
– Yes, no, don’t know (don’t know answers removed from analysis)

• 45% reported that the team(s) were self-organized
– The question forces a dichotomy and is a subjective assessment.
– Assumes that ”self-organized” is close to what people will think of as

autonomous.
• The providers reported much higher proportion of self-organized teams

than the clients (73 vs 23%).
– Indicates a differences in use of terminology, lack of knowledge or

something else ...

25/5/18

6

Here	is	what	we	found	...
• Self-organized teams (average values)

– Were more frequently used for smaller projects (2.3 vs. 3.0, using a
scale from 1 to 4, where 2 = Small (0.1-1 mill Euro) and 3 = medium (1-
10 mill Euro)

– Were assessed to be slightly more agile (2.5 vs 2.8, using a scale from
1=very agile to 5=not at all agile) and used more agile practises (3 vs. 1)
• More use of product backlog (71 vs 61%), velocity (40 vs 11%),

stand up meetings (69 vs 29%), but same degree of frequent
deliveries (2.2 vs 2.2, on a scale from 1=frequent deliveries to client
and 4=only end-deliveries)

– Had a slightly less involved client (1.9 vs 1.8, using a scale from
1=”very involved” to 4 (”not much involved”).

– Were less likely to have a detailed, upfront project plan (40% vs 60%).
– Had about the same requirement volatility (1.9 vs 2.0, where 1=very

much and 4=very few/none) and similar use of contracts (only slightly
less use of fixed price contracts).

More	importantly,	did	self-organized	
(autonomous)	teams	deliver	better	

results?

25/5/18

7

Yes!	Especially	when	working	agile	with	frequent	
deliveries	to	client

Agile	=	Perceived	as	“very	agile”/“agile”	 and	with	freq.	deliveries	during	the	project	execution.
Acceptable	=	Perceived	as	acceptable	or	better	wrt client	benefits,	time	control	and	cost	control
Successful	=	Perceived	as	successful	wrt client	benefits,	time	control	and	cost	control

What	about	scaling?	Does	autonomous	
teams	on	large	projects	lead	to	chaos?

25/5/18

8

It	seems to	scalewell ...

Small	=	<	1	mill Euro,	Medium	=	1-10	mill Euro,	Large	=	>	10	mill Euro

Selected results (related to	agile)	
from	our surveys

25/5/18

9

A	survey	of 63	Norwegian	software
development projects

When	looking	at	agile	projects	we	found	that	

“agile	is	not	agile”
The	numbers	 show	the	increase	(in	percent	 points)	 in	proportion	 of	successful	

projects

Agile	was	only	connected	 with	more	client	 benefits	when	including	 frequent	
delivery	to	production	 and	flexible	 scope.
Agile	projects	 not	 including	 these	practices	 were	LESS	successful	than	
non-agile	projects!

Agile Frequent	
delivery	 to	
production

Flexible	 scope

Client benefits 16% 22% 29%

Technical	quality 21% 6% 32%

Budget	control 2% 22% 29%

Time	control 8% 11% 24%

Efficiency 11% 5% 24%

Similar	results	 in	our	 later	follow-up	surveys	and	studies

25/5/18

10

Similarly,	in	a	more	recent	study	(unpublished),	we	found	that	
the	presence	of	frequent	deliveries	in	agile	projects	was	mainly	
important	when	connected	with	high	requirement	volatility

Agile	software	projects	seem	to	be	less	
affected	by	large	project	size

(paper	presented	at	XP	2018)

25/5/18

11

Analysis	 of	data	about	more	 than	400.000	 small	
projects	 (offshoring	 marketplace)	 and	an	in-depth	

survey	 of	35	large	governmental	 projects

Stronger	emphasis	 on	low	
price	 in	selection	 of	
provider

Lower	client/stakeholder	
involvement	in	project	
management

Stronger	focus	on	
specification	and	 less	
on	what	gives	 the	
client	more	benefits

Project	 scope	changes	
and	scope	flexibility	
perceived	more	as	a	
risk

Less	use	of	agile	
development	with	
frequent	deliveries	 to	
production	and	 flexible	
scope

Lower	client	
involvement	in	
management	
of	resources

Less	 focus	on	benefit	
management	during	
the	project	execution

Higher	 risk	of	project	problems

Lower	
emphasis	on	
provider	 skill

Higher	 risk	of	provider	
and	developer	skill	
problems

Higher	 risk	of	quality	or	
productivity	problems

Higher	 risk	of	 client	
benefits	problems

Less	and	late	 feedback	
from	users	and	
stakeholder

Failure pattern starting with the choice of contract

Higher	 risk	of	
opportunistic	 provider	
behaviour,	 when	making	
financial	 loss

Higher	 risk	of	 selection	of	
a	provider	with	price	
based	on	over-optimistic	
effort	estimate

Fixed	price	contracts

25/5/18

12

Stronger	emphasis	 on	
evaluation	of	skill,	 less	
emphasis	on	 low	price,	 in	
selection	of	provider

Stronger	client	and	
stakeholder	 involvement	
in	project	management

Project	 scope	changes	
and	scope	flexibility	
perceived	as	a	an	
opportunity

More	use	of	agile	
development	with	
frequent	deliveries	 to	
production	and	 flexible	
scope

Stronger	client	 involvement	
in	management	
(monitoring,	 selection)	of	
resources

More	 focus	on	benefit	
management	during	
the	project	execution

Higher	 likelihood	 of	project	 success

Higher	 likelihood	 of	
competent	provider	and	
skilled	 developers

Higher	 likelihood	 of	good	
quality	and	productivity

Higher	 likelihood	 of	
delivering	 the	expected	
client	benefits	

More,	earlier	and	
better	feedback	from	
users	and	other	
stakeholder

Success	pattern

Less	 risk	of	opportunistic	
behaviour	of	provider

Time	&	material	 contracts

What	I	wanted	to	say	...

• The evidence (although not very strong) suggests that
autonomous teams are more successful.
– The causal connections may be complex

• Agile is not agile, and especially «frequent deliveries to
production» (enabling feedback) and »flexible scope»
is connected with more success.
– This is especially the case when there is a high requirement

volatility (which to some extent is caused by the feedback)
and when projects get larger.

• It is when we analyse success and failure patterns, not
factors, that we get the most useful results and the best
insight.

25/5/18

13

QUESTIONS?

Download	my	newest	book	for	free:	tinyurl.com/timepredictions

Pyramid	construction	organizational	
thinking	common	in	many	workplaces

25/5/18

14

Analysis	challenges:

• Poorly defined concepts, e.g., what is agile and
what is an autonomous team?

• Forcing dichotomies on continuous scales
• Cause-effect vs correlation
• Subjectivity in measurement
• Little control of sample representativeness

(convenience samples, mainly from Norway)
• Missing context information

26/11/18

1

Agile software
development and

benefits management: A
perfect match

Workshop 24. October 2018

Magne Jørgensen
Simula Metropolitan, University of Oslo

Based on:
• Jørgensen, M. (2016). A survey on the characteristics of projects
with success in delivering client benefits. Information and Software
Technology, 78, 83-94.

• Jørgensen, M., Mohagheghi, P., & Grimstad, S. (2017). Direct and
indirect connections between type of contract and software project
outcome. International Journal of Project Management, 35(8), 1573-
1586.

• Jørgensen, M. (2017, May). Software development contracts: the
impact of the provider's risk of financial loss on project success.
In Proceedings of the 10th International Workshop on Cooperative
and Human Aspects of Software Engineering (pp. 30-35). IEEE
Press.

• Do Agile Methods Work for Large Software Projects? (2018, April)
To be presented at XP 2018, Porto, Portugal.

• Huge investments in digitalization. What does it give us in return?
Keynote Software 2018 (DnD’s annual conference, Oslo, Norway).

26/11/18

2

What are key characteristics of software projects
(digitalization projects)?

• Exposed to a fast-changing world (technology, needs,
opportunities)

• Producing innovations (never constructing the same
twice)

• Transformation projects (change of work processes)
• Enables agility (such as scope flexibility, less upfront
planning and specification work, frequent deliveries, late
changes)

• Continuous development (the organization of software
development work as a project is by more and more
software professionals believed to problematic.)

What is benefits management in
software development?

• A set of processes, optimally including:
– Identify and estimate benefits (and costs)
– Develop a plan for when and how to realize benefits
– Allocate responsible for the realization of the benefits
– Continuous delivery, prioritization and management
of benefits during the project execution

– Evaluation of realized benefits
• Large variation in how (and if) these steps are
implemented

26/11/18

3

What does it mean to succeed
and to fail with software

development?

Software project success

Success is a combination of, amongst others:
• Client benefits delivered
• Cost control
• Time control
• Development efficiency
• Software properties (technical quality)
• Learning

26/11/18

4

Our studies on benefits management:
• Nine surveys, with 50-200 participants each,
representing around 1000 Norwegian software
projects in the public and the private sector.

• In-depth, interview-based examination (case
studies) of 35 software projects in the public
sector of Norway

• Ongoing studies in two large organization on
benefits management in large scale agile

Success and failure rates
found in our studies

All studies give similar results:
• Around 50-60% successful projects
• Around 30-40% problematic (but not
failed) projects

• Around 10% failed projects

26/11/18

5

How is agile and benefits
management connected?

It helps to work agile, but …

… only when including frequent delivery to production and flexible
scope.
Agile projects not including these two practices were LESS successful
than non-agile projects! These two practices are strongly connected to
benefits management.

Agile Frequent delivery
to production

Flexible scope

Client benefits 16% 22% 29%

Technical quality 21% 6% 32%

Budget control 2% 22% 29%

Time control 8% 11% 24%

Efficiency 11% 5% 24%

Similar results in our follow-up surveys and studies

26/11/18

6

Benefits management helps, especially
during the project execution …

Benefit management practices Proportion Increase in success rate (wrt benefits)
Cost-benefit analysis (up front) 47% 6%

Benefit responsible appointed 57% 22%

Plan for benefit management 33% 31%

Benefit management during proj. execution 53% 34%

Evaluation of benefit during/after proj. exec. 31% 19%

Survey 1:

Benefit management practices Present Not present/don’t know

Cost-benefit analysis (up front) 31% with problems 22% with problems

Benefit responsible appointed 28% with problemer 29% with problems

Plan for benefit management 29% with problems 28% with problems

Benefit management during proj. execution 20% with problems 35% with problems

Survey 2 (in-depth study):

Successful benefits management in a
changing world requires agile development

26/11/18

7

Agile software projects with benefits management
practices during project execution seem to be less

affected by large project size

Time & material type of contracts much
better for both the client and the

provider. Why is that?

Fixed price Time & Material

Client benefits 0% (success rate) 59%

Technical quality 22% 24%

Budget control 33% 31%

Time control 11% 29%

Efficiency 0% 19%

First study: Extremely negative results for Fixed price contracts.

26/11/18

8

Stronger emphasis on
low price in selection of
provider

Lower
client/stakeholder
involvement in project
management

Stronger focus on
specification and less
on what gives the
client more benefits

Project scope
changes and scope
flexibility perceived
more as a risk

Less use of agile
development with
frequent deliveries to
production and flexible
scope

Lower client
involvement
in
management
of resources

Less focus on benefit
management during
the project execution

Higher risk of project problems

Lower
emphasis
on provider
skill

Higher risk of provider
and developer skill
problems

Higher risk of quality or
productivity problems

Higher risk of client
benefits problems

Less and late
feedback from users
and stakeholder

Failure pattern: Interaction between contract, agile and benefits management
…

Higher risk of
opportunistic provider
behaviour, when
making financial loss

Higher risk of selection
of a provider with price
based on over-
optimistic effort
estimate

Fixed price contracts

Stronger emphasis on
evaluation of skill, less
emphasis on low price,
in selection of provider

Stronger client and
stakeholder
involvement in project
management

Project scope
changes and scope
flexibility perceived
as a an opportunity

More use of agile
development with
frequent deliveries to
production and flexible
scope

Stronger client
involvement in
management (monitoring,
selection) of resources

More focus on benefit
management during
the project execution

Higher likelihood of project success

Higher likelihood of
competent provider
and skilled developers

Higher likelihood of
good quality and
productivity

Higher likelihood of
delivering the expected
client benefits

More, earlier and
better feedback from
users and other
stakeholder

Success pattern: Interaction between contract, agile and benefits management …

Less risk of
opportunistic behaviour
of provider

Time & material contracts

26/11/18

9

Conclusions
• There are success and failure patterns, not

isolated success and failure factors
• Agile development, with its frequent deliveries

and flexibility in scope, enables good benefits
management during project execution

• Other factors, especially choice of contract,
supports or limits the ability to implement good
benefits management practices in agile
development.

• It is essential that the client is strongly involved
in the planning and execution of benefits
management

26/11/18

1

What makes software
projects successful?

ICSSE keynote 21 April 2018

Magne Jørgensen
University of Oslo & Simula Metropolitan, CDE

26/11/18

2

Based on:
• Jørgensen, M. (2016). A survey on the characteristics of projects
with success in delivering client benefits. Information and Software
Technology, 78, 83-94.

• Jørgensen, M., Mohagheghi, P., & Grimstad, S. (2017). Direct and
indirect connections between type of contract and software project
outcome. International Journal of Project Management, 35(8), 1573-
1586.

• Jørgensen, M. (2017, May). Software development contracts: the
impact of the provider's risk of financial loss on project success.
In Proceedings of the 10th International Workshop on Cooperative
and Human Aspects of Software Engineering (pp. 30-35). IEEE
Press.

• Do Agile Methods Work for Large Software Projects? (2018, April)
To be presented at XP 2018, Porto, Portugal.

• Huge investements in digitalization. What does it give us in return?
Keynote Software 2018 (DnD’s annual conference, Oslo, Norway).

How successful are IT
investments?

26/11/18

3

This ”productivity paradox” is
claimed even today. Is it true?

“… 10% increase in ICT investment leads to a
0.6% increase in growth” (i.e., around half of the
current (very low) increase in productivity is due to
ICT-investments!)

”… the growth impact of ICT has grown over time.”

26/11/18

4

A high number of studies (and researcher bias ...)

BUT …

26/11/18

5

Around 10% of all IT projects are cancelled or completed
with little or no client benefits.

About 50% get into substantial problems with either client
benefits, technical quality, cost control, time control or
development productivity.

There are much wasted and failed ICT
investments …

Why don’t we know how to avoid
failures and be successful with

software development?

26/11/18

6

There are
thousands of

reports, research
papers and

presentations on
how to succeed

with software
development

projects

Example list of success factors

SUCCESS CRITERIA IMPORTANCE (POINTS)
1. User Involvement 19
2. Executive Management Support 16
3. Clear Requirements 15
4. Proper Planning 11
5. Realistic Expectations 10
6. Short Project Milestones 9
7. Competent Staff 8
8. Ownership 6
9. Clear Vision & Objectives 3
10. Hard-Working, Focused Staff 3
TOTAL 100

The list of success factors has not changed much since the 1960s!
More or less the same list is for example presented in:
Gotterer, M.H. Management of computer programmers. Proceedings of
the spring joint computer conference. 1969. ACM

26/11/18

7

Many methods claiming success

Cobb’s paradox?

We know why projects fail, we know how to prevent their
failure – so why do they still fail?

What is a proper response to Cobb’s paradox? Do
software professionals ignore the knowledge?

Cobb’s paradox is no paradox. We don’t know much
about why something fails and how to succeed.

26/11/18

8

Even worse. The truth is that ...
• The high complexity and
innovativeness of product, process and
people organization means that we can
hardly expect to succeed all the time

• Much of what happens is outside of the
control of the project

• Connections are context dependent
and hard to identify and understand

• There is a network of connections and
we’re inherently poor at identifying and
understanding indirect relationships

• The relationships are probabilistic and
we’re inherently poor at understand
non-deterministic relationships

... we’ll probably
never

understand fully
what it takes to

succeed

A diversion into probabilistic
relationships

Just to illustrate how poor we are
at identifying them

26/11/18

9

Representativeness bias
(seeing patterns that are not there)

Question: Assume five throws with a fair coin. Which of the following
sequences is more likely to occur?
Alt. 1: Head-Head-Head-Head
Alt. 2: Head-Tail-Head-Tail

Answer: Same probability

Relevance: We tend to use to the representative heuristic (Alt 2. is more
“representative” of sequence of coin flipping) and think that non-
representative sequence (such as Alt. 1) are surprising patterns.

Failure of seeing true patterns
Question: Assume a sequence of throws with a fair coin. Which of the
following two sequences is more likely to occur FIRST?
Alt. 1: Head-Head
Alt. 2: Tail-Head
Example: Head-Tail-Tail-Head-Head….
à Tail-Head occurs before Head-Head

Answer: It is 75% likely to first observe Tail-Head and only 25% likely to
first observe Head-Head

Relevance: Some probabilistic connections are connected, hidden and
non-intuitive. Difficult to see them …

26/11/18

10

One more... (mainly for fun, but also to show
how poor our probabilistic intuition is)

• A country has regulated that no family is allowed to have more than
one son, but as many daughters as they want.

• This means that allowed sequences of child-births are:
– Boy (stop, not allowed to have more children)
– Girl-Boy (stop)
– Girl-Girl-Boy (stop)
– etc.

• Question: How does this law affect the proportion of men and
women in the country?

• Answer: Not effect at all. There will still be about 50-50 men and
women

Back to software projects ...

What does it mean to succeed
and to fail with software

development?

26/11/18

11

Software project success

We defined success as a combination of a set of criteria, subjectively judged
by the client and project manager:
• Client benefits delivered
• Cost control
• Time control
• Development efficiency
• Software properties (technical quality)

Our definition of success and failure of
software project

Scale (values for each success criterion):
• Very successful
• Successful
• Acceptable
• Problematic
• Very problematic

Project outcome (for the project as whole):
• Successful: Acceptable or better on all five criteria (benefits, cost, time,

quality, efficiency)
• Problematic: Problematic or worse on at least one criteria
• Failure: Cancelled, or delivering no or very little client benefits

26/11/18

12

Our studies (2015-2017):
• Nine surveys, with 50-200 participants each,
representing around 1000 Norwegian software
projects in the public and the private sector.

• In-depth, interview-based examination (case
studies) of 35 software projects in the public
sector of Norway

• Analysis of a data set consisting of more than
400.000 small, international IT-projects/tasks

Success and failure rates
found in our studies

All studies gave similar results:
• Around 50-60% successful projects
• Around 30-40% problematic (but not
failed) projects

• Around 10% failed projects

Like other studies, we have insufficient control of
the representativeness of the samples and with
definitions and measures of success. Other
contexts, measures and data collection methods,
may give other success and failure rates.

26/11/18

13

More interesting
(and more robust results):

How are things connected?

Question 1: Does the software
development method matter?

(Does it help to work agile?)

Common belief (amongst agile people): Yes

26/11/18

14

Our studies: Yes, agile helps, but …
The numbers show the increase (in percent points) in proportion of

successful projects

… only when including frequent delivery to production and flexible scope.
Agile projects not including these practices were LESS successful than
non-agile projects!

Agile Frequent delivery
to production

Flexible scope

Client benefits 16% 22% 29%

Technical quality 21% 6% 32%

Budget control 2% 22% 29%

Time control 8% 11% 24%

Efficiency 11% 5% 24%

Similar results in our follow-up surveys and studies

Agile is not agile (requirement change and
type of agile development)

26/11/18

15

Question 2: Are larger
(and presumably more

complex) projects
less successful?

Common belief: Yes

Our (initial) result: No
Large projects not less successful

than smaller ones (similar finding in all studies)

Criterion < 1 mill Euro 1-10 mill Euro > 10 mill Euro
Client benefits 31% 47% 35%
Tech. quality 24% 28% 25%
Budget control 24% 47% 47%
Time control 29% 35% 35%
Efficiency 24% 12% 24%

The numbers (percentages) represent the proportion of projects
assessed to be successful or very successful with respect to a success criterion.

26/11/18

16

But, the first results hid that we only had
studied completed projects

Adding non-completed projects in follow-up studies gave
that the largest projects (> 10 mill Euro) were strongly
over-represented in the group of failed projects (2-3 times
more frequent).

A rule of thumb (based on offshoring projects) is that ten
times larger project size leads to twice the risk of failure.

Also of interest:
• Different reasons for problems for small and large projects.
• Higher risk of failure with larger projects should not be used to

divide ”logical connected deliveries” into separate projects.

Agile software projects seem to be
less affected by large project size

26/11/18

17

Question 3: Does contract type
matter?

Common belief (amongst clients):
Fixed price contracts is the better (for us)

Our finding: Time & material type of
contracts much better for both the client

and the provider

Fixed price Time & Material

Client benefits 0% (success rate) 59%

Technical quality 22% 24%

Budget control 33% 31%

Time control 11% 29%

Efficiency 0% 19%

First study: Extremely negative results for Fixed price contracts.

26/11/18

18

Stronger emphasis on
low price in selection of
provider

Lower
client/stakeholder
involvement in project
management

Stronger focus on
specification and less
on what gives the
client more benefits

Project scope
changes and scope
flexibility perceived
more as a risk

Less use of agile
development with
frequent deliveries to
production and flexible
scope

Lower client
involvement
in
management
of resources

Less focus on benefit
management during
the project execution

Higher risk of project problems

Lower
emphasis
on provider
skill

Higher risk of provider
and developer skill
problems

Higher risk of quality or
productivity problems

Higher risk of client
benefits problems

Less and late
feedback from users
and stakeholder

Failure pattern (Fixed price behaviour)

Higher risk of
opportunistic provider
behaviour, when
making financial loss

Higher risk of selection
of a provider with price
based on over-
optimistic effort
estimate

Fixed price contracts

Stronger emphasis on
evaluation of skill, less
emphasis on low price,
in selection of provider

Stronger client and
stakeholder
involvement in project
management

Project scope
changes and scope
flexibility perceived
as a an opportunity

More use of agile
development with
frequent deliveries to
production and flexible
scope

Stronger client
involvement in
management (monitoring,
selection) of resources

More focus on benefit
management during
the project execution

Higher likelihood of project success

Higher likelihood of
competent provider
and skilled developers

Higher likelihood of
good quality and
productivity

Higher likelihood of
delivering the expected
client benefits

More, earlier and
better feedback from
users and other
stakeholder

Success pattern (Time and materials behavior)

Less risk of
opportunistic behaviour
of provider

Time & material contracts

26/11/18

19

Question 4: Does it help with
“benefits management”?

Common belief: Yes

Our finding: Not all benefit management

practices led to much improvements

Benefit management practices Proportion Increase in success rate (wrt benefits)
Cost-benefit analysis (up front) 47% 6%

Benefit responsible appointed 57% 22%

Plan for benefit management 33% 31%

Benefit management during proj. execution 53% 34%

Evaluation of benefit during/after proj. exec. 31% 19%

Survey 1:

Benefit management practices Present Not present/don’t know

Cost-benefit analysis (up front) 31% with problems 22% with problems

Benefit responsible appointed 28% with problemer 29% with problems

Plan for benefit management 29% with problems 28% with problems

Benefit management during proj. execution 20% with problems 35% with problems

Survey 2 (in-depth study):

26/11/18

20

Characteristics of the
successful project

Success pattern
• Good control of ambition level. Avoiding ”too much” at the

same time and good at saying ”no” to adding complexity.
• Use of contracts that avoid ”fixed price”-behavior.
• Client with competence to select and manage competent

providers and individual resources (not so much focus on low
price)
– Selection of resources from more than one provider

• Flexibility in scope (not only ”must have”-functionality)
• Client is (as a minimum) strongly involved in the planning and

execution of benefits management.
• Use of agile development with frequent deliveries to

production (or at least with proper testing/feedback from real
users)

• Early start of involvement of stakeholders (especially the
users) and planning and preparing for deployment.

26/11/18

21

Extra material

Regional differences in failure rate

26/11/18

22

Failure factors from a study of 400.000 small projects

Jørgensen, Magne. "Failure factors of small software projects at a global

outsourcing marketplace." Journal of systems and software 92 (2014): 157-169.

17.02.2018

1

Milliardinvesteringer	i	
digitalisering.	Hva	gir	det	oss?

Magne	Jørgensen
Simula	Research	Laboratory

PRODUKTIVITETSVEKST	
gjennom	 digitalisering	 (og	annen	

teknologi)	 er	trolig	det	som	– om	noe	– vil	
kunne	redde	velstanden	til	en	aldrende	
befolkning	(nedgang	i	andel	i	lønnet	
arbeid),	 som	jobber	 færre	timer,	med	

høyere	lønn,	og	som	investerer	mindre	i	
forskning	og	utvikling	enn	de	fleste	

andre	industriland.

17.02.2018

2

Velstandsland	=	Lykkeland?
«World	happiness report»

MEN,	da	må	digitaliseringen	faktisk	
føre	til	økt	produktivitet.

Gjør	den	det?

Hvor	mye	investeres?
Hvor	mye	får	vi	igjen?

Har	dette	forholdet	endret	seg	over	tid?

17.02.2018

3

VI	INVESTERER	TROLIG	STADIG	MER	I	
DIGITALISERING	

(VANSKELIG	Å	FINNE	GODE	 TALL	...)

Antall	ansatte	i	IKT-sektoren	øker	med	
ca.	2%	i	året	(mer	enn	snittet	i	EU)

17.02.2018

4

NORGE	BLIR	STADIG	MER	DIGITALISERT,	
OG	VI	GJØR	DETTE	RASKERE	OG	MER	
EFFEKTIVT	ENN	DE	FLESTE ANDRE	LAND

God	produktivitet	per	arbeidstime
(ikke	så	god	per	ansatt)

Norge

17.02.2018

5

Norge

Vi	gjør	det	godt	på	
alle	(?)	rangeringer
av	digitalisering	
(her	EUs	DESI	rangering)

Og vi	har blitt
stadig bedre
(i hvertfall på
noen indekser)

17.02.2018

6

DERSOM	ØKT	DIGITALISERING	GIR	ØKT	
PRODUKTIVITET,	SÅ	SKULLE	VI	FORVENTE	
EN	ØKT	PRODUKTIVITETSVEKST	DE	
SENERE	ÅRENE

MEN,	VI	SER	DET	MOTSATTE.	
PRODUKTIVITETSVEKSTEN	HAR	GÅTT	NED

17.02.2018

7

«Produktivitetsveksten	i	Norge	har	etter	1970	vært	
sterkere	enn	i	de	fleste	andre	land.	Produktivitetsvekst	
har	vært	den	viktigste	forklaringen	på	den	sterke	
velstandsveksten	Norge	har	hatt	i	denne	perioden.	
Produktivitetsveksten	har	falt	etter	2005.	Dette	er	
bekymringsfullt	dersom	det	er	et	uttrykk	for	et	
langsiktig	fenomen,	og	ikke	bare	et	utslag	av	
midlertidige	 forstyrrelser.»

Fra	årstalen	til	sentralbanksjef	Olsen	

17.02.2018

8

Det	undersøkelser	typisk	viser

• Digitaliseringsandelen av	
produktivitetsveksten	 var	først	høy	(1990-
tallet),	ble	så	lavere	(2000-tallet),	for	i	det	
senere	å	ha	vært	høyere	(typisk	30-50%!).

• Enkel	sagt:	Digitalisering	forårsaker	en	stor	
andel	av	produktivitetsveksten,	men	veksten	
blir	bare	lavere	og	lavere	– selv	om	vi	
investerer	mer	og	mer.

DETTE	KALLES	OFTE	
«PRODUKTIVITETSPARADOKSET»	
FØRST	FRAMSATT	AV	SOLOWI	1987-
OG	DISKUTERES	FORTSATT HEFTIG

17.02.2018

9

Litt	om	metodikken	(Solow-modellen):

Y	er	produksjonen,	 B	er	”total	faktorproduktivitet”,	 K	
er	kapitalinnsats	(som	kan	deles	opp	i	investeringer	i	
digitalisering	og	annet),	L	er	arbeid.

Bruk	av	modellen	 (regresjonsanalyse)	 gir	typisk	 at	en	
10%	økning	 i	digitaliseringskapital	gir	ca.	0.6%	
produktivitetsvekst	 (Y/L	=	arbeidsproduktivitet).

Problemer
• Kun	direkte	effekter	og	ingen	interaksjonseffekter.
• Antar	at	modellen	er	riktig	 spesifisert	og	at	
regresjonsantagelser	 ikke	brytes.

• Tar	ikke	med	økt	kvalitet	(verdi	=	pris)
• Får	ikke	med	produktivitetsvekst	der	verdiskapning	
ikke	kan	«prises»,	som	digitalisering	 av	offentlig	
sektor,	gratis	søketjenester,	selvbetjening,	
delingsøkonomi	og	spill-over	effekter.

• Tar	ikke	med	forsinkede	effekter

17.02.2018

10

...	og	så	har	vi	forskerproblemer	 (publikasjonsskjevhet)

“We	find	that	(a)	the	marginal	impact	of	ICT	capital	is	
higher	when	it	is	complemented	with	intangible	capital.”
“Intangible	capital”	er f	eks søketjenester,	 gratis	
programvare,	kompetanseøkning og merkevarebygging.

Trolig vesentlige spill-over	effekter

17.02.2018

11

Hvor	stor	del	av	investeringene	kan	i	det	hele	
tatt	gi	oss	produktivitetsvekst?

• Totalt	sett	brukes	caen	tredjedel	(34%)	til	utvikling	av	ny	
funksjonalitet	(nye	systemer	eller	ny	funksjonalitet	i	
eksisterende)
– Og	da	er	det	ikke	inkludert	det	meste	av	investeringer	i	
kompetanse,	omstilling,	utredninger,	m.m.

– Offentlig	sektor	med	lavere	andel	enn	privat	sektor	(30%	vs.	
40%).

• 17%	brukes	til	utvikling	av	nye	systemer,	41%	til	forvaltning,	
og	42%	til	brukerstøtte	og	drift.	Stabilt	siden	minst	1993.

• Hvor	stor	del	er	”disruptiv”	digitalisering?	Vanskelig	å	si,	men	
trolig	en	forsvinnende	liten	andel.

Ca.	10%	av	alle	IKT-
prosjekter	blir	enten	
stoppet	eller	leverer	svært	
lite	kundenytte.

Ca.	50%	får	vesentlige	
problemer	enten	med	
nytte,	kvalitet,	
kostnadskontroll,	
tidskontroll	eller	
produktivitet

www.hitledelse.com

Noe investering gir reelt sett	produktivitetsnedgang …

17.02.2018

12

Gjør	digitalisering	oss	mer	lykkelige?
(annet	enn	gjennom	velstandsøkning)

Det	meste	av	empiri	tyder	på	at	digitalisering	
(stort	sett)	har	positive	effekt	på	fornøydhet

• Unngår	kjedelig	arbeid	som	å	fylle	ut	
selvangivelse,	mer	spennende	 bruk	av	fritid,	
større	sosiale	nettverk,	lettere	tilgang	på	
informasjon,	...

• Bekymringer:	Jobb-trygghet,	personvern,	
overforbruk/avhengighet,	isolasjon,	...

• Effekt	avhenger	av:	Kompetanse,	utdannelse,	
helse,	kultur,	politikk,	...

17.02.2018

13

Lykke-modellen	
(regresjonsanalyse,	nok	en	

gang)	tyder	på	at	økt	
internettbruk	gir	et	lite	

direkte	bidrag	til	økt	 lykke.

1%-poeng	økning	i	antall	
internettbrukere	gir	et	

utslag	på	0.006
på	landets	lykkesnitt

Digitalisering	lønner	seg	- noen	mysterier	består

• Vi	trenger	digitalisering	som	gir	produktivitetsvekst	for	
å	beholde	vår	velstand.	

• Velstående	land	=	lykkelige	land.	Digitalisering	ser	ut	til	
å	gjøre	oss	litt	lykkeligere.

• Godt	dokumentert	at	en	stor	(kanskje	økende)	andel	av	
en	stadig	lavere	produktivitetsvekst	skyldes	økte	
investeringer	i	digitalisering.

• Problematisk,	men	mulig,	å	forsvare	mer	digitalisering	i	
en	tid	der	produktivitetsveksten	har	gått	ned,	mens	
digitaliserings-investeringene	har	gått	opp.

• Alt	kan	snus	fra	litt	dystre	til	svært	lovende	utsikter	
med	én	stor	innovasjon.	Kunstig	intelligens?

17.02.2018

14

SPØRSMÅL?

26/11/18

1

The world is probabilistic
and skewed

Ignorance, use, misuse,
misunderstandings, and how to

improve cost and benefits
uncertainty analyses in software

development projects

Magne Jørgensen
Simula Research

Laboratory/OsloMet

Does the software industry know and
communicate what they mean with

an effort estimate?

(Do you know what an estimate is?)

26/11/18

2

	

An estimate is an estimate is an estimate?

A proper communication of
what we mean with an
estimate requires a
probabilistic understanding!

It’s fine to give a single point
estimate, as long as we tell
where at the distribution we
are, e.g., that we
communicate a most likely
or p50-estimate (median
estimate).

Estimate =
Best case?
Most likely?
Median?
With contingency added?
Something else?

A survey among software professionals

“You have just estimated the number of work-hours you think you need to develop and
test four different software systems. Please select the description below that you think
is closest to what you meant by your effort estimate in the previous four estimation
tasks:
• Number of work-hours I will use given that I experience no or almost no major

problems. [Ideal effort]
• Number of work-hours I most likely will use. [Most likely effort]
• Number of work-hours where it is about just as likely that I will use more as it is that

I will use less effort than estimated. [Median effort/p50]
• Number of work-hours where it is unlikely that I will use more effort than estimated.

[Risk averse effort/budgeted effort/…]
• Number of work-hours based on my expert judgment/feeling of how many work-

hours I will use. I find it difficult to decide about the exact meaning of the estimate.
[Don’t know/gut feeling]

• None of the above descriptions is close to what I typically mean by an effort estimate.

26/11/18

3

Results (replicated in other surveys)
Interpretation
(as claimed in hindsight)

Frequency of interpretation

Ideal effort 37%

Most likely effort 27%

Median effort (p50) 5%

Risk averse effort 9%

Don’t know/gut feeling/other 22%

Similar problems (probably worse)
with estimates of benefits ...

I analysed more than 100 cost-benefit plans of Norwegian IT projects. None were
explicit about what they meant with their estimated benefits or estimated profit.

26/11/18

4

Sometimes software companies
try to include uncertainty in their
estimates.

Some provide and add uncertainty as shown below
Exercise: Find (at least) five problems

Activity Minimum
effort
(best case,
optimistic)

Estimate Maximum
effort
(worst case,
pessimistic)

Activity A 15 work-

hours

20 work-

hours

25 work-

hours

Activity B 40 work-

hours

60 work-

hours

80 work-

hours

Activity C 45 work-

hours

50 work-

hours

55 work-

hours

SUM effort 100 work-
hours

130 work-
hours

160 work-
hours

1. Not communicating of what is meant by
minimum, estimate (most likely?) and maximum

2. Too symmetric intervals. The outcome
distribution is typically right-skewed.

3. Too narrow intervals. Strong tendency towards
too narrow effort intervals to reflect, for example,
a 90% confidence inerval.

4. Incorrect additions. It is only the mean values that
can be safely added, not the most likely, the
minimum or the maximum effort. Adding most
likely estimates leads to underestimation in a
right-skewed world. (For benefits, which may be
left-skewed (?), this may lead to over-estimation.)

5. No dependencies. Most projects have
dependencies between activities, e.g., testing is
40% of development. Not including this, leads to
even more underestimation.

26/11/18

5

A brief side-track on adding
estimates in a right-skewed world

Assume project X

• Ten user stories, where all have the same (right-skewed) effort outcome
distribution
• Minimum (p10): 5 hour
• Most likely: 10 hours
• Maximum (p90): 22.5 hours

• Add-on activities (dependencies): 5 activities calculated as proportions of the
sum of the ten user stories (administration, system test,). All of them have the
same right-skewed effort outcome distribution
• Minimum (p10): 15% of the effort on the user stories
• Most likely: 20% of the effort on the user stories
• Maximum (p90): 35% of the effort on the user stories

26/11/18

6

The effort distributions
(log-normal, right-skewed)

A user story An add-on activity

«Ignorant» adding of activities
• SUM User stories
• 10 x most likely (10 hours) = 100 hours

• SUM Add-on activities
• 5 x 0.2 x SUM User stories = 100 hours

• SUM TOTAL
• 100 tv + 100 tv = 200 hours

• Gives a STRONG underestimation!
• Very unlikely to use 200 hours or less!

The sum of the most likely effort is NOT the most likely sum

26/11/18

7

Sum of the effort distributions

Still not optimal, not right-skewed.
Central limit theorem + no dependencies à symmetric

P10 = 215
Most likely = 246
P50 (median) = 250
Expected value (mean) = 251
P85 = 282
P90 = 290

«Ignorant»
estimate,
200 hours

Sum of effort distributions with dependencies (add-on dep.)

P10 = 220 (up from 215)

Most likely = 265 (up from 246)

P50 (median) = 284 (up from 250)

Expected value (mean) = 288 (up from 251)

P85 = 345 (up from 282)
P90 = 361 (up frok 290)

Large increase in most likely estimates, nd it is right-skewed.

Median estimate (50% likely) is 284 (vs. “ignorant“ of 200 and “no

dependencies“ of 250)

26/11/18

8

The most ”advanced” companies do it with asymmetric and wider
intervals, and the use of the ”PERT”-formula. Still problematic?

Activity Minimum effort
(p10)

Most likely (ML)
effort

Maximum effort
(p90)

Mean effort
PERT effort =
(Min+4ML+Max)/6)

Variance of effort
PERT variance =
(Max – Min)2/36

Activity A 15 work-hours 20 work-hours 40 work-hours 23 work-hours 17

Activity B 50 work-hours 60 work-hours 100 work-hours 65 work-hours 69

Activity C 45 work-hours 50 work-hours 150 work-hours 66 work-hours 306

Sum Expected value = 154 work-hours 392 (stdev = 20)

Uncertainty p85 (85% conf. not to exceed) equals ca. exp. value + stdev 154 + 20 = 174 wh

• The assumption of the PERT-formula is the unrealistic assumption that min=p0 and max=p100. Does not affect mean

effort much, but the variance get much too small. Should divide variance (assuming p10 as min and p90 as max) by

approx. 2.652= 7.0 instead of 36! PERT gives much too narrow intervals.

• No support for knowing what a p10 and p90 estimate should be (No diff betwen 75%, 80%, 90% and 98% confidence

intervals.)

16

Experiment: Are software developers and managers able to give min-
max with X% confidence?

• Participants: 62
professional software
developers (from
Ukraine)
• Estimated the same

task.
• Asked for min-max

intervals

Rwidth =
(Max – Min)/Most likely

26/11/18

9

What to do? A long way to go …

A simple approach leading to more realistic
effort uncertainty asessments

1. Estimate the most likely effort of the new project or task.
2. Identify the ”reference class” (similarly estimation complexity of projects or

tasks).
3. Recall the estimation error distribution of the reference class.
4. Use the estimation error distribution to find p10, p50 (plan), p80 (budget), p90

or whatever estimate you need.

Example:
• You estimate the most likely effort a new project to be 1000 work-hours and want

to find the p90-estimate (which will be your maximum effort).
• In the reference class of similar projects you find/know that 90% of the projects

had an effort overrun of 60% of less (= 10% had more than 60% overrun).
• Your p90-estimate should consequently be 1000 + 60% of 1000 = 1600 work-hours.

26/11/18

10

We have evaluated and
implemented this approach in
real-world contexts

20

Experiment

• Nineteen estimation teams of software professionals within one company.
• Estimation of the most likely effort of a project, which had just started.
• Estimation of the uncertainty in terms of 90%-confidence intervals (p5 and p95).
• Two groups:
• Group A: Uncertainty assessment ”as usual”. Give 90% prediction intervals. No

support for minimum and maximum judgements.
• Group B: Create the error distribution of the reference class. Provide

minimum and maximum effort.
• Results: The teams in Group B had much more realistic views of the real

uncertainty of the project. Especially for the minimum effort, understanding that
the world is right-skewed.
• Two replications in real-world contexts (controlled field experiments) confirm the

results of improved realism using this method.

26/11/18

11

So what …
• Poor communication of what is meant by effort and benefits estimates is

typical in software estimation contexts.
• Poor use of uncertainty assessment methods, if used at all, is even more

common.
• Too narrow and too symmetric effort intervals gives ”garbage in – garbage

out” even when using proper uncertainty assessment methods.
• Looking back on previous estimation error is a ”simple” and effective way of

getting realistic effort prediction intervals.
• This requires compentence and mindsets based on probabilities and

distributions.
• A long way to go before the IT industry are able to identify the real

uncertainty of software projects...

Large-Scale Agile:
Experiences from the Finnish Telecom

Industry

Prof. Casper Lassenius
16.10.2018

Casper Lassenius 8

Agenda
• Large-Scale Agile
• The cases
• Scaling to many teams
• Scaling the Product Owner
• Dealing with Product Management
• Infrastructure
• Building the Agile Mindset

Casper Lassenius 9

Large-Scale Agile
• Can mean many things
– Agile in large organizations
– Large efforts

• $$$
• Long time
• Many people involved

– Here: >5 teams, 50 people in the same undertaking
• Basic planning and coordination mechanisms break down

Casper Lassenius 10

Cases
Organization Product # teams # people # sites

Ericsson A Network
element

25-40 250-400 3

Ericsson B Service
Platform

5-6 100 3

Nokia A Network
element

20 300 4

Nokia b Network
software

7 200 3

F-Secure Security
software

14 150 1

Casper Lassenius 11

Some Issues in Large-Scale Agile
• Scaling to many teams
– Finding a balance between team alignment and

autonomy
• How much freedom can be given to teams, and what must be

common?
– Inter-team coordination

• Sharing knowledge between roles that are now
scattered in teams rather than in their own function
– E.g. embedded architects

• Scaling the Product Owner function
• Dealing with the rest of the (non-agile) organization
• Building the agile mindset

10/16/18 Department of Computer Science 13

Large-Scale Agile

Product
Owners

Product
Management

Customers

Marketing
& Sales

HR

Finances

The Agile Team
Considerations:

- Cross-functional
- Self-organizing?
- What can a single team decide?
- What should be common with other teams?

- Synchronization points with other teams?
- Expert roles in teams?

- E.g. architects
- Common model to start with
- Needs coaching

The Agile Teams

Product
Owners

Product
Management

Customers

Marketing
& Sales

HR

Finances

Inter-team Coordination
Inter-team coordination:
- Team responsibility – a huge mindset change
- Possible structures

- Scrum-of-Scrums (SoS)
- Joint Release Planning / PI planning
- Communities of practice (CoP)
- Common Demo & Retrospective

Literature: Scrum-of-Scrums (SoS)

Scrum-of-Scrums

1. What did your team do since the
previous meeting that is relevant to
some other team?

2. What will your team do by the next
meeting that is relevant to other
teams?

3. What obstacles does your team have
that affect other teams or require help
from them?

4. Are you about to put something in
another team’s way?

Team sends a
representative

SOS meeting:
• 2-5 / week
• 15-30 min

More teams?
Nested Scrum meetings:
Scrum-of-Scrum-of-Scrum
(SoSoS)

SoS in Case A
Finnish SoS (F2F)

Global Sos
(Teleconference)

6 Indian teams

2 German teams

2 Greek
teams

Finnish PM
(Emails memo)

LEADS LEADS

10 Finnish teams

SoS in Case A
Finnish SoS (F2F)

Global Sos
(Teleconference)

6 Indian teams

2 German teams

2 Greece
teams

Finnish PM
(Emails memo)

LEADS LEADS

10 Finnish teams

Challenges:
- Too many teams
- 3 first questions left out:

”impediments”
- Result: ”No problems”
- Useless meeting?

Case A
“. . . it would be good if people

would really talk about the
problems there. Sometimes it
feels like everybody just says

‘No problems’, that everything
is going ok, but later on comes
up that this and this does not

work. (. . .) And many are
fighting with the same problem

at the same time.”

“Maybe part of the reason
is that in general you don’t

get solutions there
anyway. Now we are

scattered around
the world, so we don’t

have an absolute Scrum of
Scrums.”

— Developer

Tester Developer

SoS in Case B
Grande SoS
- videoconference
- 1-3 / week

Feature SoS
-videoconference
- 1 / week
- separate meetings for each feature

3-5 teams from 1-2 sites

25 teams from 2 sites

SoS in Case B
Grande SoS
- videoconference
- 1-3 / week

Feature SoS
-videoconference
- 1 / week
- separate meetings for
each feature

3-5 teams from 1-2 sites

25 teams from 2 sites

Challenges:
- In Grande SoS teams report

”what they find important to
share”

- What to share?
- ”Nothing to share”
- ”Too big”
- ”No added value”
- Feature SoS a solution?

Case B

”Feature SoS meetings
are pretty good, because

people there do the
same things, talk “the
same language” and

have a common goal.”

But the [Grande] SoS
meetings between
features, it’s very

difficult to see the added
value, because people
do not talk about the

same things, it just
doesn’t work, it’s too

big.”

Community of Practice

• Often used to solve problems related to organizational boundaries
– E.g. role-specific CoPs

• Suggested as a mechanism to try in large-scale agile development by
the LeSS framework
– Can be used for a variety of purposes, including role-based concerns (as

guilds), and for coordination and planning

a group of people who share a concern, a set of problems, or a passion
about a topic, and who deepen their knowledge and expertise in this area
by interacting on an ongoing basis

Community-based decision making
• The community (developers, SMs, POs) have decision

making authority related to
– Technical decisions
– Ways of working
– Scheduling of work (in collaboration with product

management)

• The role of management has changed from monitoring
and controlling to supporting the organization

• This is a huge cultural / mindset change compared to
the traditional way of working in Ericsson

10/16/18 27

Ericsson: Current STRUCTURE

POs

Release PGMProduct ownerLine Capability
Long-term item s

AREA1 AREA2 AREA3Product

Product Management

Epic-based
ordering

SI 1 SI 1 fI 1 fI 2 XFT XFT XFT XFT XFT XFT XFT XFT

Features

Epics

U ser
Stories

Infra

Product
CoP

AREA1
CoP AREA2

cop

Tech Leads participate in communities of practice
Flexible Team allocation, commit in 2mo chartering

AREA3
cop

Do’s and Don’ts
• Aim at getting the teams to

coordinate amongst themselves
• Use synchronized Sprints if the

organization is not mature
• Allow teams autonomy to

decide things themselves that
do not affect other teams

• Have the teams decide jointly on
things that affect them all

• Easily add extra “coordination
roles”

• Add extra coordination meetings
(have the teams make that
decision)

Casper Lassenius 29

Product Owners

Product
Owners

Product
Management

Customers

Marketing
& Sales

HR

Finances

Product Owner Structure in Nokia

Product
Owner

Product
Manager

Line
Manager

Project
Manager

Area Product Owner (APO)

Solution
Architect

System
Architect

1-n
APOs

1-n teams
per APO

Product Owner Structure in Ericsson
Product
Manager

Product
Owner

Area Product
Owner

Area Product
Owners

1-n
APOs

Small
feature

Small
feature

Large
feature

Do’s and Don’ts
• Do

– Consider building a PO team
– Have one PO work with 1-3

teams
– Locate the POs close to the

teams
– In a distributed project, PO on

the same site as the team if you
have site-specific teams

– Think carefully about the
competence needed: technical
vs. business

• Don’t
– Split the PO role to be a

committee – the PO is always a
person

Casper Lassenius 34

Product Management

Product
Owners

Product
Management

Customers

Marketing
& Sales

HR

Finances

Product Management

Product Management:
- Huge mindset change

- Cannot continue in waterfall mode
- Releases: When? What? Role of roadmaps?
- How to plan continuously?
- Involve teams in planning
- Lightweight plans

Product
Management

Joint Release Planning at F-Secure
• 10-14 teams
• 2-3 days planning
• 2-4 month release
• Videoconference

Break and
refreshment

area

Presentation
area

Team
breakout

area

Team
breakout

area

Team
breakout

area

Team
breakout

area

Team
breakout

area

Team
breakout

area

Team
breakout

area

Team
breakout

area
Team

breakout
area

Team
breakout

area

Screen

Joint Release Planning at F-Secure

Continuous Planning at Ericsson
• 1-2 week cycle time
• One pager
• FCS= Feature

Concept Study
• F0, F1, F2 decision

points

Workspaces and Infrastructure
• Spaces
– Team spaces
– Product Owner team
– Global connections

• Infra
– Continuous integration
– Automated tests

Continuous integration

Developer

Team

COMMON

System

Unit Test Component test

Simulated
LEGACY TEST

target
build

Load
test

2h Function
Test

FULL Ft

Upgrade

Load
tests

Robustness
Speech Quality
Characteristics

sec

min

hour

day

week

Simulated
Smoke test

Team build

Static
Analyzers

1/day/Team

20:00

Wed

N/day

Practices for Scaling Lean & Agile Development
Craig Larman and Bas Vodde

Transformation: Be Agile about Going
Agile

• Use a “sandwich” approach (C)
• One product / product area at a

time
• Tailor specifically to each

product setting
• Take an experimental approach

– Try what seems to make sense.
If it does not, change it

• Training and coaching
• It is a journey, not a project

Casper Lassenius 42

Agile is a Mindset
• Agile is not primarily a set of practices or processes

• Agile is a mindset, a new way of thinking about
software development, customer collaboration, and
management

• Experimental, empirical way of working
rather than planning, controlling to stick
to the plan
– Relates both to product development and
– Organizational development

Casper Lassenius 43

Agile Frameworks
• Scrum most often used

“process”
– Tailor carefully

• Scaling frameworks
– LeSS (Large Scale Scrum)
– SAFe (Scaling Agile Framework)
– Use with care

• No replacement for actually
“getting” agile

Casper Lassenius 48

Summary
• Agile implementation at scale is a journey, not

a project
• Mindset is the most important aspect – to

build an experimental mindset both for agile
implementation and product development

• Use frameworks wisely – as a source of ideas,
beware of by-the-book implementation

Casper Lassenius 49

Contact

Casper Lassenius
casper@simula.no

Casper Lassenius 50

Ericsson Finland R&D
• 40 years of R&D experience
• 400 R&D professionals
• 100 patents filed every year

• Main responsibility areas
– Media Resource Functions
– Device Connectivity Platform
– Radio Network Transmission products
– Network Security Solutions
– Research

• Forerunner within Ericsson in
large scale agile & lean adoption

Big Changes
Big projects Decoupled development and

flexible releases

Current STRUCTURE

POs

Release PGMProduct ownerLine Capability
Long-term item s

AREA1 AREA2 AREA3Product

Product Management

Epic-based
ordering

SI 1 SI 1 fI 1 fI 2 XFT XFT XFT XFT XFT XFT XFT XFT

Features

Epics

U ser
Stories

Infra

Product
CoP

AREA1
CoP AREA2

cop

Tech Leads participate in communities of practice
Flexible Team allocation, commit in 2mo chartering

AREA3
cop

Big projects Decoupled development and
flexible releases

System/development/test
silo organization Cross functional teams

More Big Changes

Team Forming session

Visible Changes
Big projects Decoupled development and

flexible releases
System/development/test
silo organization Cross functional teams

Individual offices Team spaces

The team space

Changing learning
Big projects Decoupled development and

flexible releases
System/development/test
silo organization Cross functional teams

Individual offices Team spaces

Narrow & specialized
competences

Broader competences and
continuous learning

Changing culture
Big projects Decoupled development and

flexible releases
System/development/test
silo organization Cross functional teams

Individual offices Team spaces

Narrow & specialized
competences

Broader competences and
continuous learning

Individual accomplishment Team success

Changing thinking
Big projects Decoupled development and

flexible releases
System/development/test
silo organization Cross functional teams

Individual offices Team spaces

Narrow & specialized
competences

Broader competences and
continuous learning

Individual accomplishment Team success

Following a defined
& detailed processes Agile and Lean thinking

Changing leadership
Big projects Decoupled development and

flexible releases

System/development/test
silo organization Cross functional teams

Individual offices Team spaces

Narrow & specialized
competences

Broader competences and
continuous learning

Individual accomplishment Team success

Following a defined
& detailed processes Agile and Lean thinking

Top down control More people initiative and
self organization

Large scale and Distributed Agile &
Lean

�Soft aspects� of SW development
Interaction between people,
engagement, team dynamics,
creativity, self-organization, etc.

�Hard aspects� of SW development
Languages, tools, techniques
architectures, modeling, processes, etc.

Case Organization - Comptel
– A Finland based global telecom

company - cares for more than 20% of
all mobile usage data in the world

– Customers: 300 service providers
across 90 countries serving 2 billion
end-customers

– Recently acquired by Nokia
– 2 business lines developing 4 products

SW Development processes:
– Initially waterfall
– 2008 Scrum
– 2015 SAFe

Why SAFe?
- Inter-team

collaboration
- Remove product

management silos
- High-level prioritization
- Faster reaction to

market changes

Global Distribution of Comptel
Software Development

Finland

Business line 1= Case 1
14 teams

Business line 2 = Case 2
12 teams

Malaysia

UK

Norway

Finland

Russia

Bulgaria Malaysia

Several teams, 2 locations

One team Several teams

A few persons

4 teams

4 teams3 teams

1 team divided between
Finland and Russia

Methodology
RQ: How did the SAFe adoption differ between
the business lines?
Data collection: 11 interviews (fall 2016), 1-2
hours each

Role Case 1
(Finland + Malaysia)

Case 2
(Finland + Malaysia)

SM/team member 2 1

Product Owner 1* 1*

RTE 0 + 1 1

Managers 2 2 + 1

Total 6 6
* A person from platform organization supporting both business lines

The SAFe Adoption
• First major change: Program

Increment (PI) planning
– 10 week increments
– 2 day events
– Skype-for-Business between

sites
• Closer communication and

collaboration
– Between development teams:

Scrum-of-Scrum meetings
– Between POs and PMs
– Between PMs
– PO community meetings

• RTE facilitates

Day 1 - Agenda

Breakfast

Business vision

Architecture vision

Planning in teams

Scrum-of-Scrums

Planning in teams

Day 2 - Agenda
Breakfast

Planning in teams

Plans presented

Confidence vote

Retrospective

Case 1 Case 2

SAFe training After problems emerged Managers on SAFe courses,
developers internally

Change resistance &
engaging people

Lack of training and
communication ->
change resistance

Trainings, communication,
successful PI planning

Change agents Few internal, leading
change part-time

Several internal, external coach,
RTE leading change

External coaches Not in the beginning Supported from the start

Release train engineers Part-time RTE (Malaysia) Full-time RTE (Finland)

1st PI planning event Light preparation, chaotic
event

Intense preparation, RTE
supported by a coach, successful
event

Continuous
improvement

Items found in retros, but
not much reacted

Items collected, responsibilities
given, followed up by RTE

Satisfaction Work satisfaction
lowered after SAFe

70% of team members satisfied
with SAFe in fall 2016

7 Success Factors for SAFe Adoption
1) Training the personnel well in
advance
2) Informing and engaging
people
3) Involving change agents
4) Hiring an experienced external
consultant to train, advice and
support
5) Preparing well for the first PI
planning event
6) Having a full-time RTE
7) Taking recognized
improvement items seriously by
assigning responsibilities and
monitoring their implementation

7 Success Factors for SAFe Adoption
1) Training the personnel well in
advance
2) Informing and engaging
people
3) Involving change agents
4) Hiring an experienced external
consultant to train, advice and
support
5) Preparing well for the first PI
planning event
6) Having a full-time RTE
7) Taking recognized
improvement items seriously by
assigning responsibilities and
monitoring their implementation

Success factors
of large-scale

agile
transformations
(SLR by Dikert et

al. 2016)

7 Success Factors for SAFe Adoption
1) Training the personnel well in
advance
2) Informing and engaging
people
3) Involving change agents
4) Hiring an experienced external
consultant to train, advice and
support
5) Preparing well for the first PI
planning event
6) Having a full-time RTE
7) Taking recognized
improvement items seriously by
assigning responsibilities and
monitoring their implementation

Success factors
of large-scale

agile
transformations
(SLR by Dikert et

al. 2016)

SAFe specific

7 Success Factors for SAFe Adoption
1) Training the personnel well in
advance
2) Informing and engaging
people
3) Involving change agents
4) Hiring an experienced external
consultant to train, advice and
support
5) Preparing well for the first PI
planning event
6) Having a full-time RTE
7) Taking recognized
improvement items seriously by
assigning responsibilities and
monitoring their implementation

Success factors
of large-scale

agile
transformations
(SLR by Dikert et

al. 2016)

SAFe specific

General change
management

Backup material

Casper Lassenius 72

The Chief PO

PPO

Team
Small

feature 1
Small

feature 2
Large
feature

Product
manager

The Chief
product
owner leads
the PO team

Technical
specialists

Early
phases

program
manager

Several proxy
product owners
can share
a single large
feature

The development
organization

Stakeholders

A single proxy
product owner
can have
multiple
small features

PPO PPO PPO

Team Team TeamTeamTeam

Results: Backlog Management

Results: Starting and Closing Stories

• Scrum: Stories are opened after sprint
planning and closed at the sprint review

• Most often started during the bi-weekly
sprint planning and closed during the bi-
weekly sprint review day.

• Less than a third (30%) started during the
sprint planning day and approximately a
third (32%) were closed during the sprint
review day.

• Clear mismatch with Scrum

• The utilization of developers was kept high
by starting new user stories mid-sprint
– Optimizing resource usage, not ”flow”

• Developers wanted to demonstrate and close
stories as soon as they were ready
– Became “part of the legacy”

Results: User-story development time
• Scrum: Expected development

time: 1 sprint (14 days)

• Actual mean development time:
27 days

• Less than a third completed in
one sprint

• Clear mismatch with Scrum
• One-sample Wilcoxon Signed-Rank Test

confirms (p < 0.001)

• Inter-team and external
dependencies postpone user
story closing

• Large and complex system –
difficult to create small end-to-
end user-stories

Results: Estimates and the development time

• Scrum: Estimate and DIP should
not correlate, as all stories are
opened and closed at the same
time regardless of size (in this
case: DIP should be 14 days)

• No notable correlation overall
– Kendall’s tau-b = 0.255

(p < 0.001)
• Most teams have no notable

correlation
• Three teams with moderate

significant correlation
– τB = 0.576, 0.661, 0.484

(p = 0.010, 0.002, 0.014)
• No explanation for the result

from these teams

Estimate

40201310854321

C
o

u
n

t

100

80

60

40

20

0

2
11

49

3

69

84

2

63

26

48

USIKKERHETSVURDERING

FOR NYTTEPOENG OG

KOSTPOENG

«Nytte og kostnadsstyring av IT-prosjekter i en usikker verden»

HiT-frokostseminar 7. mars 2018

JO HANNAY
SIMULA RESEARCH LABORATORY

Nyttestyre

• Hva da?
• Hva vil det si?

Tiltak/Prosjekt

Produktelementer Lønnsomhetsanalyse

Gevinst

Kravspesifikasjon
= produktelement

(Minste) levedyktige produkt

(Minimal) marketable feature

(Minste) levedyktige endring

(Minimal) viable change
Epos/Epic
Historier/stories

Konstruksjon

Produkt

Tiltak/Prosjekt

Nytte/kost-indeks Lønnsomhetsanalyse

Gevinst

1,30 2,93 4,71 4,89 10,53 12,33 = produktelement

Nytte/kost-indeks

Nytte-estimat
38,71

Kost-estimat
3,14

Nyttestyre:
Maksimere nytte
i forhold til kost

tidlig

Tiltak/Prosjekt

Effektmål Lønnsomhetsanalyse

Gevinst

1,30 2,93 4,71 4,89 10,53 12,33 = produktelement

Nytte/kost-indeks

Effektmål Nytte-estimat
38,71

Kost-estimat
3,14

Tiltak/Prosjekt

Ordne produktkø

1,30 2,93 4,71 4,89 10,53 12,33 = produktelement

Gevinst

Effektmål

Tiltak/Prosjekt

Ordne produktkø

= produktelement

12,33 10,53 4,89 4,71 2,93 1,30

Start her!

Tiltak/Prosjekt

Stoppe i tide

= produktelement

12,33 10,53 4,89 4,71 2,93 1,30

Gevinst

Produkt

Utsett denne!

Konstruksjon

Nytte/kost-indeks for tiltak

Tiltak/Prosjekt Tiltak/Prosjekt Tiltak/Prosjekt

Lønnsomhetsanalyse

Gevinst Nytte/kost-indeks

163,4 463,3 303,1

Effektmål Effektmål Effektmål

Virksomhetsmål
Planlagt Gevinst

 (inkl. «myke»)

Ordne porteføljen
Lønnsomhetsanalyse

Gevinst

Effektmål Effektmål Effektmål

Virksomhetsmål
Planlagt Gevinst

 (inkl. «myke»)

Konstruksjon i porteføljen
Lønnsomhetsanalyse

Gevinst

Effektmål Effektmål Effektmål

Virksomhetsmål
Planlagt Gevinst

 (inkl. «myke»)

1,30 2,93 4,71 4,89 10,53 12,33
0.76 4,21 5,43

1,10 1,20 2,10 4,56 8,65 9,40 7,56 9,78 14,59

Konstruksjon i porteføljen
Lønnsomhetsanalyse

Gevinst

Effektmål Effektmål Effektmål

Virksomhetsmål
Planlagt Gevinst

 (inkl. «myke»)

1,30 2,93 4,71 4,89 10,53 12,33
0.76 4,21 5,43

1,10 1,20 2,10 4,56 8,65 9,40 7,56 9,78 14,59

Konstruksjon i porteføljen
Lønnsomhetsanalyse

Gevinst

Effektmål Effektmål Effektmål

Virksomhetsmål
Planlagt Gevinst

 (inkl. «myke»)

1,30 1,21 0.76 4,21 5,43
1,10 1,20 2,10 4,56 8,65 9,40 7,56 9,78 14,59

Konstruksjon i porteføljen
Lønnsomhetsanalyse

Gevinst

Effektmål Effektmål Effektmål

Virksomhetsmål
Planlagt Gevinst

 (inkl. «myke»)

1,30 1,21 0.76 4,21 5,43
1,10 1,20 2,10 4,56 8,65 9,40 7,56 9,78 14,59

Konstruksjon i porteføljen
Lønnsomhetsanalyse

Gevinst

Effektmål Effektmål Effektmål

Virksomhetsmål
Planlagt Gevinst

 (inkl. «myke»)

1,30 1,21 0.76 4,21 5,43
1,10 1,20 2,10 4,56 8,65 9,40

Konstruksjon i porteføljen
Lønnsomhetsanalyse

Gevinst

Effektmål Effektmål Effektmål

Virksomhetsmål
Planlagt Gevinst

 (inkl. «myke»)

1,30 1,21 0.76 4,21 5,43
1,10 1,20 2,10 4,56

Konstruksjon i porteføljen
Lønnsomhetsanalyse

Gevinst

Effektmål Effektmål Effektmål

Virksomhetsmål
Planlagt Gevinst

 (inkl. «myke»)

1,30 1,21 0.76 4,21 1,10 1,20 2,10 4,56

Inntjent forretningsverdi
(Earned Business Value)

Med nytteestimater og
kostestimater på
produktelementene kan
man planlegge for å
optimere nytte/kost
tidlig

E4

E8

E1
E5

E7

E2

E3
E6

Inntjent forretningsverdi
(Earned Business Value)

…og man følge med på
hvordan man faktisk
ligger an i forhold til
planen, for både kost
og nytte.

E4

E8

E1
E5

E7

E2

E3
E6 grunnkalkyle

KS2 usikkerhetsregime for kost

 Side 20

Inntjent forretningsverdi
(Earned Business Value)

optimistisk

pessimistisk

nøytral

grunnkalkyle

KS2 usikkerhetsregime for forretningsverdi

Forretningsverdi

Grunnkalkyle

Uspesifisert

Forventede
mangler

Usikkerhets
Styringsramme for
utførende etat

Styringsmål for prosjektleder

Vedtatt ramme fra fagdepartement

Inntjent forretningsverdi
(Earned Business Value)

optimistisk

pessimistisk

nøytral

grunnkalkyle

E4

E8

E1
E5

E7

E2

E6
E3

Vi får til dette takket være nytte- og kravpoeng

Tiltak/Prosjekt

Nyttepoeng og kravpoeng

1,30 2,93 4,71 4,89 10,53 12,33 = produktelement

Nytte/kost-indeks

Effektmål Nytte-estimat
38,71

Kost-estimat
3,14 Kravpoeng

Nyttepoeng

Tiltak/Prosjekt

Nyttepoeng og kravpoeng

1,30 2,93 4,71 4,89 10,53 12,33 = produktelement

Nytte/kost-indeks

Effektmål Nytte-estimat
38,71

Kost-estimat
3,14 5

13

Uthenting av ekspertkunnskap

Planning
Poker

Relativ estimering

Nytte-
Poker

Poeng overalt

Tiltak/Prosjekt Tiltak/Prosjekt Tiltak/Prosjekt

Lønnsomhetsanalyse

Effektmål Effektmål Effektmål

Virksomhetsmål
Planlagt Gevinst

1,30 2,93 4,71 4,89 10,53
0.76 4,21 5,43

1,10 1,20 2,10 4,56 8,65 7,56 9,78

3

12,7 5

18,2

2

5,5

211

63 3

27,3

5

16,5

Instansiere den relative
poengbaserte vurderingen

Tiltak/Prosjekt Tiltak/Prosjekt Tiltak/Prosjekt

Lønnsomhetsanalyse

Effektmål Effektmål Effektmål

Virksomhetsmål
Planlagt Gevinst

1,30 2,93 4,71 4,89 10,53
0.76 4,21 5,43

1,10 1,20 2,10 4,56 8,65 7,56 9,78
3,0

6,6

76

37,8 1,8

9,8

3,0

5,9

1 nyttepoeng = 0,36 mill
1 kostpoeng = 0,6 mill

Grunnkalkyle (før usikkerhetsvurdering):

Instansiere den relative
poengbaserte vurderingen

Tiltak/Prosjekt Tiltak/Prosjekt Tiltak/Prosjekt

Lønnsomhetsanalyse

Effektmål Effektmål Effektmål

Virksomhetsmål
Planlagt Gevinst

1,30 2,93 4,71 4,89 10,53
0.76 4,21 5,43

1,10 1,20 2,10 4,56 8,65 7,56 9,78
3,9

5,6

65,4

49,1 2,34

8,4

3,9

5,1

nøytral
P50 nyttepoeng = 0,31 mill
p50 kostpoeng = 0,78 mill

Grunnkalkyle (før usikkerhetsvurdering):

Instansiere den relative
poengbaserte vurderingen

Tiltak/Prosjekt Tiltak/Prosjekt Tiltak/Prosjekt

Lønnsomhetsanalyse

Effektmål Effektmål Effektmål

Virksomhetsmål
Planlagt Gevinst

1,30 2,93 4,71 4,89 10,53
0.76 4,21 5,43

1,10 1,20 2,10 4,56 8,65 7,56 9,78
3,8

5,8

67,6

47,8 2,2

8,7

3,8

5,3

Optimistisk
p65 nyttepoeng = 0,32 mill
p35 kostpoeng = 0,76 mill

Grunnkalkyle (før usikkerhetsvurdering):

Instansiere den relative
poengbaserte vurderingen

Tiltak/Prosjekt Tiltak/Prosjekt Tiltak/Prosjekt

Lønnsomhetsanalyse

Effektmål Effektmål Effektmål

Virksomhetsmål
Planlagt Gevinst

1,30 2,93 4,71 4,89 10,53
0.76 4,21 5,43

1,10 1,20 2,10 4,56 8,65 7,56 9,78
4,1

4,7

54,9

52,3 2,5

7,1

4,1

4,3

Pessimistisk
p15 nyttepoeng = 0,26 mill
p85 kostpoeng = 0,83 mill

Grunnkalkyle (før usikkerhetsvurdering):

Inntjent forretningsverdi
(Earned Business Value)

optimistisk

pessimistisk

nøytral

grunnkalkyle

E4

E8

E1
E5

E7

E2

E6
E3

Sensitivitetsanalyse

Tiltak/Prosjekt

E6 E5 E8 E4 E2 E7 E3 E1

Uten usikkerhetsvurdering
1 nyttepoeng = 0,36 mill
1 kostpoeng = 0,6 mill

4,69 3,41 3,41 2,09 2,01 1,87 1,40 0,72

Optimistisk
p65 nyttepoeng = 0,32 mill
p35 kostpoeng = 0,76 mill

Pessimistisk
p15 nyttepoeng = 0,26 mill
p85 kostpoeng = 0,83 mill

Nøytral
P50 nyttepoeng = 0,31 mill
p50 kostpoeng = 0,78 mill

Sensitivitetsanalyse

Tiltak/Prosjekt

E6 E5 E8 E4 E2 E7 E3 E1

Uten usikkerhetsvurdering
1 nyttepoeng = 0,36 mill
1 kostpoeng = 0,6 mill

3,08 2,24 2,24 1,37 1,32 1,23 0,92 0,47

Optimistisk
p65 nyttepoeng = 0,32 mill
p35 kostpoeng = 0,76 mill

Pessimistisk
p15 nyttepoeng = 0,26 mill
p85 kostpoeng = 0,83 mill

Nøytral
P50 nyttepoeng = 0,31 mill
p50 kostpoeng = 0,78 mill

Sensitivitetsanalyse

Tiltak/Prosjekt

E6 E5 E8 E4 E2 E7 E3 E1

Uten usikkerhetsvurdering
1 nyttepoeng = 0,36 mill
1 kostpoeng = 0,6 mill

2,43 1,77 1,77 1,08 1,04 0.97 0,73 0,37

Optimistisk
p65 nyttepoeng = 0,32 mill
p35 kostpoeng = 0,76 mill

Pessimistisk
p15 nyttepoeng = 0,26 mill
p85 kostpoeng = 0,83 mill

Nøytral
P50 nyttepoeng = 0,31 mill
p50 kostpoeng = 0,78 mill

Sensitivitetsanalyse

Tiltak/Prosjekt

E6 E5 E8 E4 E2 E7 E3 E1

Uten usikkerhetsvurdering
1 nyttepoeng = 0,36 mill
1 kostpoeng = 0,6 mill

3,27 2,38 2,38 1,46 1,40 1,31 0.97 0,50

Optimistisk
p65 nyttepoeng = 0,32 mill
p35 kostpoeng = 0,76 mill

Pessimistisk
p15 nyttepoeng = 0,26 mill
p85 kostpoeng = 0,83 mill

Nøytral
P50 nyttepoeng = 0,31 mill
p50 kostpoeng = 0,78 mill

Hvordan får vi fram de ulike realverdiene?
(pessimistisk, nøytral, optimistisk)

KS2 usikkerhetsregime for kost

p35 = 48 mill

p85 = 52,75 mill

p50 = 49,25 mill

pX-tallene er generert ved Monte Carlo-simulering der kostestimatene er antatt uavhengige

KS2 usikkerhetsregime for kost

 Side 42

p35 = 48 mill

p85 = 52,75 mill

p50 = 49,25 mill

85%
sannsynlighet

for at det koster
maks 52,75 mill

50%
sannsynlighet

for at det koster
maks 49,25 mill

35%
sannsynlighet

for at det koster
maks 48 mill

KS2 usikkerhetsregime for forretningsverdi

Forretningsverdi

Grunnkalkyle

Uspesifisert

Forventede
mangler

Usikkerhets
Styringsramme for
utførende etat

Styringsmål for prosjektleder

Vedtatt ramme fra fagdepartement

KS2 usikkerhetsregime for forretningsverdi

Forretningsverdi

Grunnkalkyle

Uspesifisert

Forventede
mangler

Usikkerhets
Styringsramme for
utførende etat

Styringsmål for prosjektleder

Vedtatt ramme fra fagdepartement

P65 = 66,75 mill

P15 = 61,25 mill

P50 = 65,50 mill

pX-tallene er generert ved Monte Carlo-simulering der nyttetimatene er antatt uavhengige

KS2 usikkerhetsregime for forretningsverdi

Forretningsverdi

Grunnkalkyle

Uspesifisert

Forventede
mangler

Usikkerhets
Styringsramme for
utførende etat

Styringsmål for prosjektleder

Vedtatt ramme fra fagdepartement

P65 = 66,75 mill

P15 = 61,25 mill

P50 = 65,50 mill

65%
sannsynlighet

for at verdi blir
maks 66,75 mill

50%
sannsynlighet

for at verdi blir
maks 65,50 mill

15%
sannsynlighet

for at verdi blir
maks 61,25 mill

KS2 usikkerhetsregime for forretningsverdi

Forretningsverdi

Grunnkalkyle

Uspesifisert

Forventede
mangler

Usikkerhets
Styringsramme for
utførende etat

Styringsmål for prosjektleder

Vedtatt ramme fra fagdepartement

P65 = 66,75 mill

P15 = 61,25 mill

P50 = 65,50 mill

35%
sannsynlighet

for at verdi blir
minst 66,75 mill

50%
sannsynlighet

for at verdi blir
minst 65,50 mill

85%
sannsynlighet

for at verdi blir
minst 61,25 mill

Hvordan får vi fram pX-verdier?

Estimatusikkerhet kost trepunktestimater

Hendelsesusikkerhet kost trepunktestimater

Estimatusikkerhet nytte trepunktestimater

Hendelsesusikkerhet nytte trepunktestimater

Simulere prosjektløp

0

0.01

0.02

0.03

0.04

60 000 prosjektløp

60 000 prosjektløp

pX

pX

Oppsummering

• Nyttepoeng i tillegg til kostpoeng!

• Bruk metoder for usikkerhetsvurdering
også på nytte (forretningsverdi)!

• Fra grunnkalkylen, generer
alternative verdier som reflekterer
usikkerhetsvurderingene…

• …og plugg dem inn i kost- og nyttepoeng
for å få usikkerhetsbaserte
styringsrammer for både
kost og forretningsverdi!

5

13

For å lære mer
- Kontakt oss!
 johannay@simula.no
 kjetil.strand@verdix.no
 benestad@expertware.no

- Ta kurset IT Project Professional ITPP
(Metier Academy)
- prosjektmetodikken PRINCE2®
- sammen med smidige teknikker og
- beste praksis for kontraktshåndtering.
46 PDU til PMP-sertifiserte fra Project
Management Institute

http://www.smidigeprosjekter.no/itpp

http://simula.no - søk på «Hannay» -> publications
Http://hitledelse.no – Suksess med IKT i offentlig sektor -> Publikasjoner

Det var det

Neste gang: Periodisering

